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ABSTRACT

Cumulative detection probability, cdp, is defined as probability of at least one

success in n trials. "Success" means that the (signal) stochastic process exceeds

a given threshold. Exact formulas or approximations for cdp are given in the

cases where the process being sampled in the trials is two-state Markov, Gaussian,

"step," and "step-plus-jitter." In the two-state Markov case, taken largely from

others, k-success formulas are also given. Finding cdp is equivalent to finding the

distribution of the maximum of a sequence of random variables and to finding a

cumulative multivariate distribution.
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PREFACE

This is a report to the U. S. Navy Underwater Sound Laboratory under Contract
Number N140(70024)74322B as part of an investigation of optimal search procedures
for surface ship sonar. The report is related to other reports on the project as
follows: A previous report, reference [a], presented stochastic process Inferences
from empirical sonar data; these inferred processes underlie most of the theoretical
analysis in the present report. A forthcoming report will present results on optimal
search procedures; the analysis will depend heavily upon some of the methods dis-
cussed herein.

We wish to acknowledge the splendid direction and cooperation we have received
during this work from Mr. Carleton S. Walker of the System Planning Staff at
USNUSL, and through him, from Mr. Stanley A. Pkterson, Associate Technical
Director for Systems Development. We further acknowledge the valuable assistance
of our colleague, Mr. David C. Bossard, who reviewed previous work on two-state
Markov processes and contributed Theorems H-1 and JI-2 in Chapter IL

One of the authors, Professor Edward S. Boylan, has returned to Rutgers, The
State Univers;ity, after participating in this investigation during the summer of
1964.
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SUMMARY

This report presents methods of computing cumulative detection probability (cdp),
i. e., the probability of at least one successful detection in n trials. This is equivalent
to the problem of computing the (curniulative) distribution of an n-dimensional random
variable, and to the problem of computing the distribution of the maximum of an
n-term sequence of random variables. In tils summary we describe the stochastic
process model used and the nature of the results for various types of processes.

Stochastic Process Detection Model

We fix a continuous-parameter stochastic (signal) process X* (which associates
to time t a random variable X*) and a threshold function T*. These determine a
success-failure process D*: Detection at Iithe t means Xt > T* or equivalently,
it=1; no detection means X _ < Tt, i.e., D=0. If X is sampled (observed) at
tl,... stn, denote X.=Xi, T\.= Ti, and Dý.=Di. Define

pti=Pi=Pr{Xi> TO}

and

cdp=Pn=Pr{Xj> Ti forsomei, lUiSn)}.

The problem is to compute Pn under various assumptions on I& or X. In Chapter I,
the model is developed in more detail and background of the problem is given.

Two-State Processes

Two-state larkov processes are investigated in Chapter 11. Attention is confined
to the discrete-parameter success-failure process D (and briefly to D*), ignoring
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X* and X. It is assumed that D is Markovian. Most of the results are taken fromprevious literature.

If D is stationary (i.e., independent of i, pi=p, and ri=r, the correlation
between Di and Di+l), then D is characterized by a single 2 x 2 transition matrix (11-1).
The transition probabilities are expressed in terms of p and r, and conversely.
Formula (H1-2) gives the probability of exactly k successes in n trials (for k= 0, 1,2,...)
by means of a generating function. These are added to form probabilities of at least k
successes (Pn if k= 1), explicitly given in formulas (11-3) for k= 1 and k= 2. (Other
than in Chapter II, the report is restricted -o k= 1. ) Also given is the probability of
at least two consecutive successes. These probabilities are presented graphically in
Figures UI-1 through 11-6 for various r, n, p, qnd for k= 1, 2.

If D is non-stationary, then the situation for k= 1 is only slightly more complicated.
The transition probabilities are given by formulas (11-4) in terms of pi and ri which now
depend on i; Pn is given by (11-5).

When the number of observations n in a fixed interval (with D sLationary) is made
to approach infinity, P. = limn, Pn is given by Theorem II-1. This represents
cdp for a continuously observed process; P, is graphed in Figure 11-7.

For a sequence of independent trials, a generating function is given in Theorem
H-2 for the probability of exactly k successes. This is applied explicitly to
k= 1, 2, 3, and k= 0 is elementary. The formulas reduce to the binomial distribution
if pi is independent of i.

Gaussian Processes

If X * is Gaussian, then computation of Pn is equivalent to computation of a multi-
variate normal distribution. This is investigated in Chapter III -- previous literature
is reviewed in Appendix A.

The principal method offered in this case is a convenient approximation based
on the assumption (used in Chapter 11) that the discrete-parameter success-failure
process D is Markovian. Computation aids (constructed from bivariate normal
tables) are presented in Figures HI-1 through II-4, and application is illustrated by
a tabulated example.

For the purpose of investigating the error in this approximation to Pn,
Theorem I1-1 reduces the problem for n= 3 to a one-dimensional integration, under
the assumption that (X,., X2 , X 3 ) "s Markovian as well as Gaussian; formula (I1-2)
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gives a corresponding result for n = 5, requiring bivariate rather than univariate
normal tables for inputs to the integration. Theorem 1I-2 shows that under the
assumption that X is Markovian, the approximation to P 3 is no less than the true
P 3 , and an exact formula is given for the error. A bound on this error expression
is given by Theorem 111-3.

Examples of the error in the approximation are presented in Table HI-l,
primarily for n = 3 or 5 and X Markovian. The errors in Pn are of the order of
. 01 or less. Under these conditions, the approximation appears to be very good,
and the errors do not appear to grow substantially as n increases from 3 to 5.
Neither stationarity in X nor constant T appear important for accuracy. However,
in a special case where X is not Markovian, the approximation is rated fair at best.

Step Process

A step process X * is one in which each realization is a step function, with the
jumps occurring in a Poisson process, and with the sampled values before and
after a jump being independent draws from a fixed distribution. For this type of
process, cdp is investigated in Chapter IV.

An exact formula for Pn is given in Theorem IV-1 in the "unimodal' "e,
wherein the threshold is non-increasing prior to a minimum point and is nonl-
decreasing thereafter. The corollary gives a neat form of this formula for the
case where the observations are uniformly spaced. The latter formula is used
in Theorem IV-2 to pass to a limit to obtain P•,, -- this includes the constant-
threshold case of Theorem H-1 as a special case. The monotonic case of this
theorem was known previously.

Without the assumption of unimodal thresholds, convenient exact formulas
have not been found in closed form; however, an exact recursive procedure is
given for Pn. The required number of multiplications is in the order of n 2 , and
thus the recursive procedure appears more efficient than a straightforward
approach, which would require over 2n-1 multiplications.

Step-Plus -Jitter Process

A step-plus-jitter process X* is the sum of a step process Z* and a jitter
process J*; it is assumed that J* is independent of Z* and of itself. The cdp
problem for X* of this type is investigated in Chapter V.
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•The assumption of unimodal thresholds is no longer helpful. An exact (out
laborious) method of computing Pn is given by recursive formulas in the same
vein as for the pure step process of Chapter IV.

An approximation to cdp is derived by means of an "Ym-i~ependent" process,
wherein each observation depends only on the outcomes of th4 preceding m trials.
The parameters of the m-independent process are chosen to make it , esemble
the step-plus-jitter process.

This is applied to obtain an approximation to P., by means of a recursive
procedure (which requires much less computation than the exact procedure). The
accuracy of this approximation is illustrated for m =2 in Figures V-1, V-2, and
V-3. Applied to a pure step process, the approximation is very accurate. When
jitter is present (of a particular uniformly-distributed type), the approximation
appears to be good, providing there is a high probability of jumps between
observations; if this probability is not much highei than 1/3 (the lowest value
for which the approximation can be used with m= 2), then the accuracy is not as
good, but it is still much better than an estimate based on an independence
assumption.

Miscellaneous

Appendix A surveys various fundamentals relevant to stochastic processes.
Definitions and elementary properties are given for n-dimej-isional random
variables and their distributions, correlation, stochastic processes with emphasis
on Markov processes, and related concepts.

Previous publications on computing the multivariate Gaussian distribution are
reviewed in Appendix B. Surprisingly little appears to be known on the problem.
Formulas ,or Gaussian cdp are cited in some very special cases, which do not
appear to be of much practical interest for present purposes.

Appendix C presents some statements on correlation. Theorem C-1 gives the
autocorrelation of the sum of two stochastic processes. Theorem C-2 gives some
basic facts on correlation between two two-state random variables. Theorem C-3
gives an inequality comparing the correlation between two Gaussian variables with
the correlation between the corresponding two success-failure variables obtained
by thresholding; the latter correlation is smaller. Theorem C-4 shows that the auto-
correlation of a step process equals that of the associated success-failure process
obtained by thresholding; both autocorrelations are exponential decay.
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THEORY OF CUMULATIVE DETECTION PROBABILITY

CHAPTER I

INTRODUCTION

This report is addressed to the theoretical aspects of the problem of computing
cumulative detection probability, cdp, i. e., the probability of at least one success
in a sequence of detection trials. This problem has arisen in several ways during
an investigation of optimal, sonar search procedures, conducted for the 'Jnderwater
Sound Laboratory. Common practice has been to treat successive detection trials
(e. g., pings) as being statistically independent. One quickly sees that when this
assumption is not satisfied (as is usually the case), then absolute estimates of cdp
can be greatly erroneous. Moreover, relative comparisons and selections of
optimal search parameters may also be substantially in error, although this may
not be as obvious. The purpose of the report is to provide theoretical tools which
can be used to avoid such erroneous assumptions of independence.

The substance of this report is largely mathematical in character, and will
be presented in the language of probability theory. To find this report usable, the
reader will need facility with elementary probability theory, and will need some
knowledge of stochastic process concepts. In particular, an understanding of the
elementary fundamentals of a Markov process (or Markov chain) will be necessary.
Appendix A surveys the most relevant fundamentals, with emphasis on Markov
processes, but, of course, it is not a substitute for a text.

It is useful -o bear in mind that the problem of computing cdp is equivalent to
the problem of computing the distribution of the maximum of a sequence of random
variables, and to the problem of computing a (cumulative) multivariate distribution.
These equivalences assist in bringing results from the literature to bear on the
cdp problem, and may in turn enable cdp research to contribute to these equivaient
problems. It is surprising how little is known, apparently, about computing the
multivariate normal distribution, for example.

In the remainder of this introduction we review the historical background of the
cdp problem, and relate the detection problem to a basic mathematical model:
thresholding on a stochastic process. Thereafter, problems of detection per se



arise only in abstraction. The four succeeding chapters are addressed to finding cdp
when the underlying processes are respectively two-state Markov, Gaussian, "step, t?

and IIstep -plus -jitter. t, The appendices survey fundamentais of stochastic processes,
review the literature on multivariate normal distributions, and present some theorems
on correlation which are useful for cdp purposes.

Background of the Problem

The historical background of the problem of computing cdp stems from early work
on search theory, envisioning radar and sonar detection, notably various OEG reports,
and derived publications,by B. 0. Koopman. We particularly cite references [b], [c],
[d], [e], and [f]. In general, the problem of computing cdp has been one in which both
empirical knowledge and theoretical tools have been inadequate.

The first three of these references are addressed to general theory of search,
while reference [f] is an analysis of sonar data. Among other things, they develop
sweep widths as areas under lateral range curves. Each point on a lateral range
curve is a cdp, viz., the probability that a target passing at given lateral range will
be detected at some point during the pass or, alternatively, at some point prior to
reaching closest approach. The possibility that fluctuations in conditions affecting
detection will occur during a pass is recognized, but is generally not treated explicitly
in references [b], [c], [d], and [f]; where glimpses are accumulated, they are done on
the basis of glimpse-to-glimpse independence. In some cases, adjustment is made
via a curve-fitting parameter (in fitting a theoretical model to empirical data), the
adjustment having an effect of partially compensating for the error in the independence
assumption.

Reference [e] by Koopman is a theoretical treatment of cumulative success in a
sequence of correlated trials -- the basic model used is that success-failure as a two-
state process is a Markov chain (Koopman has also developed this model in greater
depth in reference [g], among other papers). Some of the results will be included
here for completeness. Moreover, a useful approximation cidn to this model is
presented in Chapter HI.

More recent progress in theoretical tools has been offered by references [hi
and [i]. Reference [h], Appendix B, presented a model for time fluctuations of
acoustics in sonar detection (presumed to be primarily propagation loss) known as
a "(X, o )-process." This was applied to cumulative detection and approach problems
in Appendix C of the same reference (these Appendices B and C were due to
J. D. Kettelle Jr.). For purposes of incorporating detection capability in cumulative
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fashion in simulation of undersea warfare, APL has used a random walk model described
in reference [i]. This is a special type of Markov chain in which one may transition only
to an adjacent state, from among a finite set of states. Evidently sea state is the
fluctuating parameter primarily envisioned. Suitably adapted to operational data, the
models of references [e], [hi], and [i] could be useful improvements over the assumption
of independent glimpses.

More recent progress has also been made in empirical knowledge of sequential
correlation effects in detection parameters, although the situation still leaves a great
deal to be desired. References [0] and [k] are careful analyses respectively of closely
spaced radar )bservations on an air target and closely spaced sonar propagation losses
in convergence-zone paths. Reference [a] is a report und-ar the present project which
presents statistical analyses of BRASS H sonar data, emphasizing sequential correlation
behavior in bottom loss and echo-to-reverberation ratio. Of the existing gaps in
empirical knowledge of the sonar aspects of the problem, human operator effects
appear to be by far the most important (recognized a decade ago in reference [f]).
However, knowledge of correlation behavior in propagation loss and background inter-
ference certainly has room for improvement; in particular, there are no known data
in this vein on direct-path sonar propagation loss.

It is the aim of the present report to contribute theoretical tools to computation
of cdp. The methods developed are motivated largely by the models used to describe
the empirical sonar data in reference [a]. In reference [a] it was inferred that under
certain circumstances, the signal process could be of a Gaussian nature and in other
circumstances "step-plus-jitter." The step-plus-jitter process has as a special case
a step process, of which the (A, o)-process mentioned above is an example. From
this derives the interest in the types of processes treated in Chapters IEE, IV, and V.
We note again that reference [a] does not include operator effects -- when these are
included, the signal process is highly conjectural, and the simpler two-state Markov
processes considered in Chapter H may be as plausible as the others.

Stochastic Process Model for cdP

We suppose that a target is moving on an arbitrary track relative to a sensor
device being used to detect the target. The sensor operates in discrete glimpses.
The separation between glimpses could arise, for example, from the fact that the
sensor is an active sonar and must wait for sound travel between pings, or from
the sensor being either a sonar or a radar transmitting directionally in sweeps,
illuminating the target at most once each sweep. P&ssive sonar detection would lead
to a somewhat different model (glimpses would be overlapping time "windows"), but
it is possible that results in terms of discrete glimpses as developed herein might
also be useful in passive problems.
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The outcome of the ith glimpse is a random variable Xi. regarded as signal and
often measured in decibels. This random variable may take on values from a
continuum of real numbers and possesses a probability distribution over these values.
The sequence of glimpses thus gives rise to a sequence (X1 , X2 , ... ) of random
variables, and this sequence is termed a "stochastic process" with a "discrete
parameter. "' This term is defined more explicitly in Appendix A (and more generally
and abstractly in textbooks referenced there).

It is convenient to consider that,more generally, a glimpse is potentially
available to the sensor at any time and to denote by X* the signal random variable
which would result from a glimpse at time t. This determines a stochastic
process X* with "continuous parameter"; the process associates with each non-
negative number t, a random variable Xt. In practice, X* will be sampled at
discrete times t 1 ,... ,tn, giving rise to a discrete-parameter process (X,... X ),
of the sort mentioned in the preceding paragraph, which we denote (X 1,... , Xn) for
brevity. In the body of the report, asterisks will distinguish continuous-parameter
terminology from discrete-parameter terminology -- we usually deal with the latter.
In the appendices, this distinction will not be made.

One usually thinks of the parameter of the signal process X* as being time
(usually denoted t), although it could just as well be distance. This matter does
not concern us in the present report. We note that in the stochastic process
inferences from empirical data in reference [a], one could not discern from the
data whether the processes were time-dependent or distance-dependent.

To relate the signal random variable to detection, we introduce a detection
threshold function T*. If Xe is sampled (observed) at the point t, then detection
ensues if and only if the sampled value of X* exceeds T*. This gives rise to a
new, two-state, process D* which is called the success-failure process:

0 ifX*.<T*
*= T t J
Dt 1 if X* > Tt

* t*

A success (detection) occurs whenever Dt= 1, and a failure occurs whenever Dt= 0.
We define pt, the single-trial success (detection) probability (also called
unconditional success probability) for a trial (glimpse) at the point t, by

P *=Pr{Dt=l

=Pr{Xt > Tt}.

-4-



(The operator Pr is read, "the probability of the event.")

Suppose again that the continuous-parameter process X* is sampled at t1.... , tn.Thnw ent * D* adp*d
Then we denote Tt_, Dt . ay , and pi respectively for i=1,... ,n. We
now define Pn, the'cum lative de;ection probability (abbreviated "cdpt") in the n trials
by

Pn=Pr{Di=1 for somei, 1.i <n}

- Pr {Xi > Ti for some i, 1 < i S n).

Computing Pn is the problem to which this report is addressed. In two cases,
Theorems U-1 and IV-2, we will treat an extension of Pn applying directy to the
continuous-parameter process X*; this cdp is, for a given interval [0, u],

P =Pr{X t> Tt forsomet, 0<:t Su}

=i-Pr{ sup (X*-T*)S.O}.
0<_t<_u

There is a certain amount of arbitrariness in setting the detection threshold
function T* -- different thresholds might be used for different reference levels in
the signal process X*, and the reference levels need not be constant. The most
convenient choice in this regard would be to incorporate into T* the deterministic
(i. e., systematic) variations during an encounter, while X' reflects the random
variations about a constant mean, i. e., the mean of the random variable X' is the
same for all t. In this case, it is plausible that the process X* will be "stationary"
in the sense defined in Appendix A, in addition to having a stationary mean.

As an example of variability in thresholds, suppose the target is passing on a
straight track with a stated closest approach to the sensor. During the sequence
of glimpses, the range will decrease monotonically, will reach a minimum, and
then will increase monotonically thereafter. Suppose that parameters other than
range (e. g., environmental and operator effects) which affect detection have the
same statistical behavior on each glimpse, on each pair of consecutive glimpses, etc.

-5-



These effects other than range can be conveniently reflected in a stationary stochastic
process X*, while the deterministic effects of range are reflected in the detection
threshold T*, decreasing with range. This example has a particular type of
threshold variation which is useful in Chapter IV: the detection function is referred
to as "unimodal" (although it is actually the single-trial success probability p* which
increases to a maximum and decreases thereafter). Another example of systematic
effect on detection, for some detection systems, is the effect of target aspect
(plausibly again unimodal).

Throughout the body of the report, we fix a continuous-parameter stochastic
process X*, a threshold function Tn, a single-trial success probability function p*,
and the associated two-state success-failure process D', all as defined in general
terms above. In Chapters DI, IV, and V, the process X* is specialized to be
respectively Gaussian, "step," and "step-plus-jitter," to be defined later.
Chapter II does not deal with X* explicitly, but assumes that the two-state process D*
is Markovian. In all cases, X* is sampled (i. e., observed or trials are made) at
tl,... ,tn, giving rise to the discrete-parameter quantities Xi, Ti, Di, and Pi, for
i =1,..., n. The central problem is to find the corresponding Pn-

We note two conventions: If q is a probability, then 1 - q will be denoted by q.
The end of a proof is marked: #####

-6-
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CHAPTER II

TWO-STATE MARKOV PROCESSES

In this chapter we assume that D*, the success-failure process being sampled, is
a two-state Markov process, and we present formulas for cdp in this case. In practice,
the two-state nature of the process would presumably arise by thresholding on a multi-
state process X*, as described in Chapter I. However, the source of the two-state
process does not concern us in this chapter.

A two-state Markov process is possibly the simplest type of non-independent
process, for cdp purposes. For this reason, it will be a convenient type of an
assumption in practical applications. Moreover, the principal technique given in
Chapter 1I for computing cdp in Gaussian processes, will be an approximation which
is closely related to cdp in two-state Markov processes.

In this chapter, we will be able to give formulas for the probability of at least k
successes, and exactly k successes, in n trials. Elsewhere in the report, we are
restricted to k= 1.

The first section, which contains most of the discussion, is addressed to the
stationary case, wherein the single-trial probability of success is constant. The
non-stationary case is discussed briefly in the second section. Limiting values of
cdp, as the number of trials in a given interval becomes infinite, are given in the
third section. The final section reviews independent processes which may be
regarded as a special case of Markov processes.

Most of the results of this chapter are taken from Koopman, reference [e],
and Thiess, reference aI]. Theorems 11-1 and IH-2 were supplied by our colleague,
D. C. Bossard.

Stationary Two-State Markov Processes

In this section we investigate the simplest type of two-state Markov process, in
which p, the single-trial probability of success, does not change from trial to trial.
Correlation. be§týeen successive trials also does not change. This is a stationary
process. (See Appendix A for deinitions of these terms.)

-7-
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The process in this case is characterized by a matrix of four transition prob-
abilities given as follows, each entry being the probability that if the jth trial
results in the state of the row heading, then the j + 1st trial results in the column
heading:

Success Failure

Successa

Failure b

The assumption that the process is Markovian means simply, by definition, that
these probabilities do not depend on outcomes of trials prior to the jth trial. The
assumption of stationarity means simply that these probabilities are independent of j.
Processes of this type, as well as non-stationary cases, are explored in detail by
Koopman in references [e] and [g]. Additional discussion of Markov processes is
given in Appendix A.

Let r be the correlation coefficient (see Appendix A and Theorem C-2 of
Appendix C) between successive trials, and p be the probability that & random
trial results in success. We then have (reference [eI):

r=a-b

a =p + r

b=p -pr.

We thus see that p and r suffice to describe the situation; note, however, that we
must have r > -p/f and r > -P/p, since a and b are probabilities. The correlation
coefficient between trials h units apart is rh.

Let Rn(k) be the probability of exactly k successes in n trials. Let Pn(k) be
the probability of at least k successes in n trials -- wwe are primarily interested
in k= 1,and k= 1 will be understood if the superscript is omitted. Then Rn(0) is
the probability of n consecutive failures:

Rn(o) =pn-1.

--8--
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For k#O, 11n(k) is given by (see Thiess, reference [1 :

n-i n-m-i
Rn(k) = m; vm(k) + Vntk)

where the vm(k)fs are found from

X - (ax+ - I E(-2

1-bx 1 -bx -k

The left member as a function of x is a "generating function" for the probabilitie`s
Rn(k). Koopman gives an alternative generating function formulation as formula (20),
Section 5, of reference [e]. Formula (11-2) is slightly more general than the
corresponding expression in reference [1 ], since it allows for a probability of p that
the first event will be a success rather than requiring that the first event be a failure.
We quote the results for k= 0 and k= 1:

Rn(0) = pn-1

Rn(1) = pan- + (n-2) pabbn-3 + pbbn-,

From these we can calculate the Pn(I) and Pn(2):

Pn(1) = 1 - Rn(0 )

pn(2) = I - Rn(O) - Rn(1).

We can also express these probabilities In terms of r:

-9-



Ra0 ff= +pr)n-1

Rn()= pý (1-r) (+pr)n-3 (2r + n5 (1-r)).

If r= 0, then Rn(k) reduces to the familiar binomial form (see last section).

Reference [1 ] also gives the probability Sn( 2 ) of receiving two consecutive
successes under the same conditions as above:

Sn(2) pa+ - (( +b) -C (C +b))

where

12

(b= + ýb b 2 +4ab).

Figures 11-1 (p=0. 3), H1-2 (p=0. 5) and I1-.3 (p =0.8) give the probabilities Pn(1)
and pn(2) for n= 2, 3, 4, and 5. In Figure H1-1, S4 (2 ) is shown by a dashed line; of
course, S2 (2 ) = P 2 (2). i

We note from Figure II-1 that the effect of correlatkon increases with the number
of trials (as expected) and that it increases as the unconditional probability, p,
decreases. The effect on the probability PP(1) of at least one success in 4 trials is
opposite to the effect on P 4 (2 ) and S4 (2 ), where at least two and at least two
successive detections are respectively required; the former probability decreases
as r increases, while the latter probabilities generally increase, reaching a
maximum for r < 1 in some cases.

The effect of correlation on Pn = Pn(1) is shown in a different form in
Figures II-4, II-5, and H-6. For various values of p, the number of trials required
to yield various levels of Pn versus the correlation coefficient r is plotted. One
notes that the number of trials required iacroases monotonically with r, the increase
becoming very rapid as r approaches unity.

-10-
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Non-Stationary Two-State Markov Processes

In the non-stationary case, the quantities a, b, p, and r are permitted to change
from trial to trial, and are subscripted by the trial number accordingly. One
generalization is that the correlation coefficient between the jth trial and the
(j +h)th trial is

j+h-1
HI ri,

where ri is the correlation between the ith and (i + 1)st trial.

The transition probabilities on the jth trial are given by (page 5, reference [e]):

a=j +rjP~ j~

Pj-
1 Pj-

1

and (IR-4)

bj =pj - rj p j-1 j-1 P -

The cdp is given by

nP1 j1I bj" (H-5)j=2

We shall make use of formula (H-5) in devising an approximation to cdp in a
Gaussian process in Chapter II.

Reference [e] gives difference equations for the probability of exactly k successes
in n trials in this non-stationary case.

-17-



I

Continuous-Parameter Two-State Markov Processes

In practice we customarily achieve a sequence of trials, described previously as
a two-state Markov process, by sequentially sampling a continuous process. (The
discrete-parameter process is usually called a Markov chain.) We now state some -

elementary facts regarding the continuous version of the process, confining attention j
to the stationary case. For present purposes, we define a continuous-parameter
two-state process D to be stationary Markov if every discrete-paraneter process
obtained by sampling D at uniform points is stationary Markov.

It has been noted that the correlation between trials separated by h is rh,
where r is the correlation between successive trials. The corresponding statement
in a continuous-parameter process is that the autocorrelation function associated
with the process is of the foem e-A h, for some fixed X > 0.

Suppose that D is a continuous stationary two-state Markov process, and p is the
unconditional probability of success. Let X > 0 be as above. Suppose that D is
sampled at the n+1 points, it/n for i=0,... ,n, uniformly spaced in the interval
[0,t]. Then the limiting value of Pn is given by the following theorem:

Theorem 11-1. Under the above conditions,

P.0 = lim Pn =l1- ýe-pt

Proof. From formula (1I-3) and the given autocorrelation function, we have F

1 - Pn = [P + pe-Xt/nin-1.

The proof is completed by letting n approach infinity. *

• Throughout the report, the end of a proof will be denoted by #####.

-18-
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Theorem 11-1 is a special case of a more general result given in Chapter IV as
Theorem IV-2.

A comparison of this limiting case, i.e., when the number of trials approaches
infinity, with cases for a finite number of trials is illustrated in Figure H-7. One
notes that in general, with 10 or more trials, cdp is not much smaller than the
limiting cdp (n=oo), and hence this formula for the limiting cdp may be a useful
approximation when the number of trials is fairly large.

A different type of limiting situation is treated by Koopman in reference [g]:
the sequence of trial sequences is not contained in a fixed interval. Under various
conditions on limits, generating functions and explicit formulas are developed for
the probability of exactly k successes in the limiting case.

Independent Processes

We conclude this chapter with a brief discussion of independent processes
(which may be regarded as a special type of Markov process).

A stochastic process X is independent if Xi and Xj are independent random
variables whenever i-rj. Since there are no correlation problems in independent
processes, there is no loss of generality, for cdp purposes, in confining attention
to two-state success-failure versions of independent processes, i. e., the D process
in the notation of Chapter I. A two-state Markov process specializes to one of thls
type if aj = bj in formulas (11-4).

Let pi be the unconditional probability of success in the ith trial of an
independent process, for i=1,... ,n. Let Pn(k) be the probability of at least
k successes in the n trials, and let Rn(k) be the probability of exactl k successes.
Then

n"1-Pn(1) = 1=I1 (1 -pi) = Rn(O). (H-6)

If pi=po for i=l,...,n, then

1 -Pn11) = (11-Po)n (H-7

Rn(k) = pok (1-po)n-k (n) (11-8)
and

n k-i

= j=-k Pj=)0- j=0 Pj19)

-19-



FIGURE II 7.

EFFECT OF NUMBER OF TRIALS ON T,-WOP-STATE MARKOV cdg
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Formulas (H-6) through (H1-9) are well-known; formulas (H1-8) and (11-9) are tabulated
in reference fIn]. Formulas (11-6) and (H-7) are often applied erroneously (when the
process is not independent), which is the motivation for this report.

The following theorem provides a means of finding Rn(k) in general:

Theorem II-2. With Pl'. ""Pn and RnCk) defined as above, we have

R-(k) k
Rn~ -- "k An (Plo ... ,Pn, t) 1 for k=0, ... ,n,

where

nAn (Pl""'.IPn' t)=I (1 -Pit);
i=l

An may be thought of as a generating function for Rn(k).

Proof. We have the following recursive equation, writing Rn~k) as Rn(k) (pl'" Pn):

n (iRkl-1 ) ,Pn,
itr(.:)Pl'" Pn)=k pi Ri IP ... Pi-l' Pi+l"..'"

It is also easily shown that

(-H)k a k (-)k n ak-1

k! tk l Pn t) i=1 atki1 nt)

n -1 )k-1 a k-1Pi tk- An-I(Pl""PI'Pi+ ..""Pn 1t)f

=" i (k-l)! ak

-21-



so that

(H)k ak
k! tk k

satisfies the same recursive equation as Rnlk).

Now, since

n
Rn(O) (Pl"'" 'pn) = 11 (1 -pi) An (P19 ,Pn' t)i=1 1=nig.,nt

and

( n P
Rn (P11,... IPn) = E - i) (1 -p.)

= (-1) - An (P'" SPn , 0]
t=1

the theorem follows by induction on k+n.

We illustrate Theorem 11-2 by application to k= 1, 2, 3. We have

log An = 2109 (1 -Pi t)

aA
1n 1

a t n 1-pit

-22-
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a 2 An 2An Z P -A Z Pi2

at 2  a t I- .t (1-pit)2

a 3Ana 2An z Pi 2 p Az-

a t 3  a t 2  1-pit a t (1-Pit%2  (1-pit)3 '

Therefore, by Theorem 11-2, letting wi = pi/i for i=1,... n

Rn (0) rIPi"

1 1}

pý(2) ri {(c 2 _)2 Z w i

Rn (3)- H i• { 3 (Z wi) (Z wi 2 ) - (Z woi) 3 + 2 Z wi3,

These suffice to give pn(k) for k=1,... ,4.

-23-



CHAPTER III

GAUSSIAN PROCESSES

In this chapter we assume that the underlying continuous-parameter process X* is
Gaussian. By this is meant simply that the joint distribution of &y sequence of observa-
tion of random variables (X1,... , Xn ) is multivariate normal (see Appendix A).

In view of the definition of a Gaussian process, the problem of computing cdp,

Pn =I1- Pr{Xi <5 TIP,...,X_-n < Tn},P

is equivalent to evaluating the multivariate normal distribution. For this reason, we have
included in Appendix B,a survey of the literature on computing this distribution.

The main method of this chapter is a convenient approximation described in the first
section, with computation aids in Figures Mf-1 through 111-4. The computation method is
illustrated by an example. The approximation is based on the assumption that the success-
failure process D is Markovian. The error introduced by this assumption is investigated
in the second section; insofar as it has been tested (for n = 3 and n =5 trials -- in Table
IM-1), the approximation is very accurate, providing the discrete-parameter observation
process X is Markovian (also true if X* is Markovian). The approximation is less
accurate in some special eases where X is not Markovian.

Approximation Method

Our principal method for computing cdp, Pn, in a Gaussian process will be an
approximation method presented in this section. The method is based on the assumption
that the success-failure process D is Markovian. It is intended that this approximation
be primarily used when X is Markovian -- it docs not follow that D is Markovian (e. g.
see Rosenblatt, reference [n] ), which is the source of error in the approximation.
Errors in Pn will be investigated in the next section.

-25-



Under the assumption that D is Markovian, Pn is given by formula (1H-5) of Chapter
TT.

H:I

n

where bi is the probability that the ith trial fails, given failure on the (i- 1 )st trial; as
before, p1 is the probability of success on the ith trial.

Define zi i-1 to be the probability that both the ith and (i-l)st trials fail, for
i = 2, ... , n. ithen by definition of conditional probability (or by applying formula (11-4)
of Chapter IH and Theorem C-2(ii) of Appendix C),

- zi'i-1
Pi-1"

The formula for Pn can thus be written:

n n n "

Pn 1=1 i=2PP1 -
Pi Pi-1

(]11-1)

n n

i= i i=2 i-1

where

ii ,i-1

-26-



Note that the product of the y 4 i 1 's represents a multiplicative correction to the value
of P,, which would be obtaineý in "he presence of independent trials. For this reason.
we will refer to yi i_1 as a correction factor; the double subscript refers to the fact
that it depends on behavior in both the i a (i-l)st trials.

The Gaussian nature of X has nothing to do with formula (III-1). However, assuming,
as we do, that X is Gaussian, zi i 1 is conveniently obtained from the bivariate normal
tables, reference L[]. Using these tables, curves have been prepared for computational
convenience, and presented as Figures II-1 through IM-4, giving log1 ,, 7 . The
inputs to these curves pertain to the multi-state process X rather than thie' t-state
process D:

(1) Thresholds T, and Ti_1 measured in standard deviations from the means of
Xi and Xi-1. The thresholds are separately used to determine Pi and Pi-1 .

(2) The correlation p, 1 between X and X. This is not the same as the
correlation ri-l(not needed)between Di andi)iU l , as shown by Theorem C-3
of Appendix C.

Separate curves have been prepared for Pi, i-1 =3, .5, .7, .9. At the end points

iog10 Yi, 1 = 0 when pi=i-1 0

and

log1 0 i, i_1 = -log 10 max P P } when p, = 1

Linear interpolation of logl 0 vi with respect to pi, i-1 is quite accurate. The figures
are symmetric in Ti ard T

Example. We give an example to illustrate the procedure. Let X* be a stationary
Markov (Gaussian) process with common mean zero, common standard deviation of 5 db,
and autocorrelation between any X•I and Xý

-. 69 It2-t l
a(t2 - tl) 2e

-27-
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1. e., correlation is 0,5 between variables one time unit apart. Let X' be sampled at
times t 1 =0, t 2 =2, t3 =3, and t4 = 5, i.e., four non-uniformly spaced trials. Thex1 2 3-- * '4)
process (X,...,X 4) = ( . , ) is also Markovian, but is not stationary since

1) 4

P2 1  (t2-t =.52 .5=p32

(It can be shown that the corresponding (D1, ... , 1D4) is not Markovion, which is what
makes the method only approximate.) Let the detection thresholds (in db) be 6.5, 2.5,
0, and 4.0 respectively.

The following table sbows in tabular form all the steps necessary to calculate In
in this situation:

Trial index i - I2 3 A4

Trial time ti 0 2 3 5

ThresholdThresholn 1.3 .5 .0 .8T(in a's from mean)

Single-trial failure .9032 .6915 .5000 .7881
probability

Correlation i i1 .25 .50 .25

log 10 Yi, i-1 .011 .083 .030

logl 0 Pi .956-1. .840-1 .699-1 .897-1

Then logl 0 Pn is the sum of the bottom two rows, i.e.

-32-
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log10 Pn = 3.516-4 = .516-1

S= 328.

If one assumed the trials were independent, then one would obtain

logl 0 Pn = .392-1

Pn = .247

Error Estimates

In this section we investigate the error in the approximation method of the pre-
ceding section. The error is introduced by the assumption that the success-failure
process D is Markovian. For this purpose we assume that the discrete-parameter
Gaussian process X is Markovian. When this condition is not satisfied, no information
has been obtained on error estimates, except for the very special case of formula (A-4)
of Appendix A. Even in the Markov case our error estimates are restricted primarily
to the case where n = 3 or 5 trials. General statements relevant to these error estimates
are embodied in the three theorems below. At the conclusion of the theorems numerical
examples are given in Table HI-1.

Theorem 11-1. Let (X1 , X2 , X3 ) be a Gaussian Markov process and assume/A i = 0
and ai= 1 for i =1,2,3. Let p.. for i j be the value of the correlation between the random
variables X, and j, and assule that 0 < Pij < 1. Then

P =Pr{ X1 < T and X T and X. < T}

T . ' - T2 T1

f 0) _2 1p2-3d-(u)
21 31-P2

-33-



where 6 is the standard normal distribution function (see Appendix A).

U...~. ̂ -" t% gU vr fpt F-~~ v Iei f,. n+ +-nim 44~1 Aa,~hii~in

given that Xi =u,is simply normal with mean upij and variance 1 -" pi By hypothesis
(X1 , X2 , X3 ) is Gaussian Markov, and therefore X, and X3 will be Hdependent, given
a particular value for X 2 . Thus

T2

P3  f Pr{ Xi5 Ti, for i=1,3 X 2 = u

f Pr{ X 1 5 T 1 I X2 =u} Pr{X 3  T 3 1 X2 =u}dt(u)
-00

T2 T1 -_•_ 2 1  T31- uP 2

= f *(f -) '22( d b(u).

The same method can be used in more general. fashion, e.g. if (Xl..., X5) is a
Gaussian Markov, then

T
3f PrX~Tad T I X =u}

5  Pr{Xi<T.i forli<5} f Pr 1XI T1 andX2< 2 3

(HII-2)

Pr{ X 4  T4 and X5 5 T5 I X -=u}d6(u)•

Since the conditional distributions in the integrand are bivariate normal, one has a
more difficult time in carrying out the numerical integration; however the bivariate
normal distribution is tabulated in reference [p] .

Theorem I11-2. Let (X X , X23). , I. , p. and P be as in Theorem III-1.
Let P be the approximate cAp oZtained by asslumini the success-failure process to

3
be Markovian (formula III-1). Then the error in cdp is

-34-



T2 T2  T1 Tup. T T-vp 3 .
PP~rj~f f$( C )J ~(U) d 'b(v)

3232 (111-3)

and

P3 -3

Proof. Under the Markov assumption on (D1 , D2 , D3 ), the success-failure process,

1 -P 3 =Pr{DI=D2 =D 3 =0}

=Pr{DI=O I D2 =0} Pr{D3 =0 I D2 =0} PrfD 2 =0}

=Pr{X2 < T2 } Pr{X1 < T 1 I X2 5 T2 } Pr{X3 T 3  X2 <T 22

T T1  2 1 .d T2  T3(u) u

= T T2  T1 - uP21) T3 - v32

21 32

Using Theorem HI-1, we have

-35-



__T2  T, -u0 1 u " - u.(u1 - P3 f 4b 4( * )d(u)
"3 "

21 _ 32
(111-5)

1 T2  T2  T -up 2 1  T3  up
-- f 1" 21 l() )df(u) dlb(v)PiuP324(T 3  21 P3 2

Equation (A1-3) followb from (111-4) and (IH-51. It remains to show that P - P If
we denote the factor in square braclets in the right-hand side of (111-3) by V(u, v),
then clearly B(uv) = -B(v,u) > 0 for v > u. Since the product measure of 4 itself is
symmetric about the livp v =u,

T2 T2 T -vpT- 1 2 I(T - vP( )]B(u~v)df(u)d4,(v). (111-6)

P21 p2 1

But this integration is over the region where v ? u,and in this case both factors in the
integrand of formula (M-6) are non-negative. Hence P3 P3 . #####

We aow turn to the problem of obtaining a• upper bound on the error P3 - P3

in Theorem 111-2.

Theorem II-.3. Assume the hypothesis and notation of Theorem 111-2 and also
that th. detection thresholds are constant, i. e. Ti = To. Then

2
<1 T0

3-p3 3 exp[--( + )+ for To- 0

21 p3 2

and

P' "P 3 < 4t(To) for TO < 0.
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Proof. Let T 0. Then f (TO) ->, and hence 1/V (TO) - 2. When v u we obtain,
by the Mean Value Theorem,

(,To-upij To -vPij) (_ v-u) -x2/2 1

i - 1 ) -P / 2 7
e•

1ij Pij

where x is some number such that

TO - vpij -< x <T- upij
41~ _5s -L -

2- 2

If -co v < To, then the smallest value that x mav assume is

TO-T _o (1- _1 0-

i ij +Pij

Now using equation (111-6) ir the proof of Theorem M>-2, we see that for To 0,

1 TO v (v-u%2 T 2 1 -P•I÷)d(u jv
<1 - exp[- -2  1 2 1 +

P3 3 • f I/' 21 P32

2 T
0 ?-.21 + 0 v-2 d(u) d_ 0 V

exp[- f)] f (v-Ud) (v)
2 ,• -• 1 -p 2 2 1+ P32

2
T -P

< exp[- -( +
22 7 2 + 1+

2-p 1 1 "P 32 '21 P32
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For the case To < 0, we use equation (M-3) of Theorem 111-2. Then,

To-u_32___- P03 2 )] Id4(u) d (v)
Pao '.;1_PW9A

~3P~~~of T-u 2 1  Tup 32  T-

< 1 T T A

0 0 d od(u) dt(v)= 4•T).

In order to test the accuracy of the approximation, the true Pn and approximate
Pn were calculated and are display3d in Table IlH-1, for n-3 or 5, and for various
values of pj 4.1 and Tt. The primary methods of calculating Pn were Theorem M-1
and formula' (fli-2), in cases where the Gaussian process X=(X1 ,... ,Xn) is Markovian.
An additional method for X Markovlan is mentioned in the notes. Some special cases
where X is not Markovian were tested by use of formula (B-4) of Appendix B.

In most cases in Tablo 111-1, X is stationary, while in some cases it is not, as
noted. In most cases the threshold sequence is constant, but not in others.

For the cases where X is Markovian, the errors in Pn are in the order of . 01.
The errors are greater for Pn close to . 5 than for Pn close to 1. 0, as might be
expected. The errors for n s 5 are not substantially different from those for n = 3.
Note particularly example (11), which is both non-stationary and has non-constant
thresholds--the error is . 003, which is very small considering that Pn=. 562.

Note that the assumed correlations are in the range .4 to. 7. In general, one
expects less error for very high correlation or very low (absolute) correlation,
since the approximation is perfect if (a) p = 0 throughout X or (b) p = 1 throughout X
and the single-trial success probabilities are unimodal (I. e., non-decreasing prior
to some point and non-increasing thereafter).

For the last three cases of Table DI-1, X Is not Markovian and the errors are
somewhat higher, . 068 for n= 5 and n= 10, and the approximation could not be rated
better than fair. Nevertheless, the approximation is still a better estimate than
would be obtained by assuming independence (being lower than the latter).

We conclude that the approximation is very good for at least five trials in case X
is Gaussian Markov. This would be implied if X* is Gaussian Markov, but not
conversely. Stationarity and constant thresholds do not appear Important. For X
not Markovian, it is plausible that the approximation will be fair In many cases of
interest -- certainly examples are at hand where the error is very large, especially
as a percentage of 1 - Pn'
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TABLE III-1

EXAMPLES OF ERROR IN APPROXIMATING GAUSSIAN cdp

Thresholds
No. of trials Correlations (in a's from mean)- True cdp Approximation cdp Error

n Pi,i-1 Ti Ph Pn l- Pn

- Markov Gaussian Process -

(1) 5 .6 1.0 .443 .453 .010
(2) 5 .6 .5 .687 .696 .009
(3) 5 .4 1.0 .501 .505 .004
(4) 3 1/ 0 .708 .721 .013
(5) 3 1/If5 0 .784 .790 .006
(6) 3 1/,12 V/ .153 .013 .164 .011
(7) 3 1/,"2 -1" .416± .020 .425 .009
(8) 3 1/,15- 1 .483 +-.014 .486 .003
(9) 3 1/Vt- -1/,F5 .911 .006 .912 .001
(10) 3 1/V-/-TZ -2/'V7 .972 .003 .972 .000
(11) 3 .6,.36 (1.0,0,1.0) .562 .565 .003
(12) 3 .1 (.4,0,.4) .611 .614 .003
(13) 3 .7 (-.2,0,+.4) .703 .709 .006

- Gaussian Process Not Markov -

(14) 2 1 0 .667 .667

(15z) 5 ii 1 0 .833 .901 .068
(16) 10 Pij 1' 0 .919 .987 .068

Notes

(1) In examples (4) through (11), Pn was computed by Theorem 111-1 -- the,"+" in (6)
through (10) indicates the computed upper and lower Riemann sums in performing
the numerical integration. In examples (1), (2), and (3), formtila (MII-2)was used.
In (12) a ,1 j13), a irore ted2'ous calculation of Pn was performed: the three
Gaussian distributions were each grouped into fourteen states and the two 14 x 14
transition matrices were multiplied. In examples (14), (15), and (16), formula
(B-4)of Appendix B was used for Pn.

(2) In all cases, the approximation method using Figures rn-1 through M1-4 was used
for 41-

(3) In example (11), (X 1 ,X 2 , X3 ) is stationary, since the two correlations are not equal.
In (14), (15), and (16), X is again not stationary. In 9il other cases, X is stationary.

(4) The thresholds are not constant In examples (11), (12), and (13), but are constant
elsewhere.

-39-
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CHAPTER IV

STEP PROCESSES

In this chapter the underlying continuous-parameter stochastic process X* is
assumed to be a step process, defined in the first section. Intuitively, one may
think of the sample functions of the step process as being step-functions, i.e.,
constant over a period of time until a jump occurs. After the jump occurs, a new
value for the process is chosen which is independent of the values before the jump.
The occurrence of jumps is a Poisson process. Plure step processes of this form
are probably too idealized to be realized in physical detection processes -- their
principal usefulness is as a first approximation to the step-plus-jitter processes
considered in Chapter V.

In Theorems IV-1 and IV-2, it is assumed that the threshold function is
"unimodal. ,, Theorem 1V-1 then gives a formula for cdp when the continuous-
parameter process is sampled discretely. The corollary to this theorem gives
a neater form of the cdp formula, in the case where the time between observations
is constant. Theorem IV-2 passes the result of Theorem IV-1 to a limiting case,
where the step process is observed continuously.

The final section deals with an arbitrary threshold function. In this case
convenient exact formulas for cdp are not available. However, a recursive
procedure has been devised which is suitable when the number of observations
is not large. The number of multiplications required to compute cdp for a
sequence of n observations using the recursive reiations is of the order of n2 .

Definitions

The definition of a step process requires the specification of two auxiliary
processes Y and N. The process Y consists of a sequence of independent
identically-distributed random variables Yi for i=0,1,2,.... The commron
distribution function of the random variables Yi is called the location-after-jup
distribution, and will be denoted by K. The process N, called the &•frexate7-u
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process, is specified to be a Poisson * process with intensity X (see reference [q] for
an excellent elementary discussion of this process): NM is the number of lumps which
occur from time zero up to and including time t. The numbers of jumps occurring
in disjoint intervals are independent. Moreover, the probability of any number of
jumps occurring in a given interval depends only upon the length of the interval and
not upon its location in time. The expected number of jumps in time t is X t and

Pr { Nt =m} = e - t (X t)m for m= 0,m !

In particular, the probability of no jump in any interial of length s is e -? s

The step process, X*, is now defined by the following composition:

x* YNt fcr s >0.

When the location-after-jump distribution is normal with standard deviation a,
X* has been referred to as a "(X,,o)-process" in Appendix B (originated by J. D.
Kettelle Jr. ) of reference 1h].

Clearly, X* simply descrlben a special type of sampling scheme where a new
sample is drawn from the distributicn K whenever a jump occurs (as indicated by the
process N). Each new sample is independent of those previously drawn.

A threshold function is said to be unimodal if it is non-increasing prior to
some parameter value (not necessarily unique) at which the threshold is minimal
and therefore non-decreasing. Actually, the termkmimodal'would be more aptly
applied to the corresponding single-trial success probabilities, Pt, since these
rise to a maximum and are non-increasing thereafter.

It is shown in Theorem C-4 of Appendix C that the autocorrelation between
observations separated by s in a step process is e-X s. We note, without proof,
that a step-process is Markovian -- we do not use this fact per se.

It should be noted that in the physical process of reference [a], which provides
a principal motivation for considering step processes, the occurrence of jumps
fits much better to an Erlang process of order two or three than to a, Poisson
process (Erlang of order one).
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Unimodal Threshold Theorems

In this section, we assume the threshold function T* is unimodal. Theorem IV-1
will give the formula for cdp = Pn for the case where the process X * is observed at
n arbitrary discrete points in time, and Theorem lV-2 will extend this result to the
continuous-parameter case. We repeat the convention made in Chapter I that the
symbols X, T, and p denote respectively the process, threshold function, and single-
trial success function obtained by sampling the continuous-parameter process X * at
discrete points in time tl,... ,tn. Note that if T' is unimodal, then T will also be
unimodal.

Theorem IV-1. Let X be the discrete parameter process obtained by observing
X * at times t 1 ,... ,tn, and 0 i (for i=2,3,... ,n) be the probability of at least one
jump in an interval of length ti -ti_1 . Thus

1- e-(ti-ti-l).

Let c be an observation corresponding to a minimum threshold Tc. Then Pn is
given by *

c-1 n
Pn = 1 - (1 -Pc) il1 (1 -P i+l Pi)i +11 (1 -Pi Pi)" (IV-l)

Proof. We make use of the following elementary fact about conditional prob-
abilities: Let A, B, and C be arbitrary events and let C be the complementary
event, "not C." Suppose, in addition, that B is independent of both C and C. Then

Pr{AIB} =Fr{(AJBn c} Pr{C} +Pr{AIBfC} Pr{ .

• When the upper limit of the symbol II is less than the lower limit, we follow
the convention that the product is then equal to one.
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Let F1 correspond to the event Xi <- Ti, and Li correspond to the event "at least

one jump occurs between ti_1 and ti. "' The probability Pn may then be written as

n
TPn = =I1 di, (IV-2)

where

di=Pr{FiIF 1, F 2... nFi_ 1} for i> 1

d= Pr{F 1 } =pl.

Noting that Li is independent of F 1 n-... q Fi_1, we may use the above reanark

and write

di=Pr{Fi FIAF 2  ... nFii1NLi} Pr{Li}
(IV-3)

+Pr{F 1iFFINF 2 (T...NFiInLi} Pr{Li}.

Now, if i < c, then

di:=Pii+ -i P (I -Pi Pi (IV-4)

The first term arises from the fact that when a jump occurs in the interval between
ti and ti1, the event Fi is independent of the past. Thus the first summand in

equation JIV-3) is just Pi Pi. When no jump occurs in the Interval between ti and

ti_1, we must take the past behavior of the process into account. The conditioning

in (IV-3) states that, among other things, the event Fi_1 has occurred. This means
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that Xi_1 < Ti.l, and consequently Xi <- Tj_1 , since there has not been a jump between
ti-1 and ti. Now, since the thresholds do not get any smaller as we proceed backwards
in time, we gain no new information from the condition that events F1 ,... , Fi_2 have
occurred. Thus

Pr{ Fi IFn•...Fi -1r-•~) E =Pr {Xi S<Ti IXi S<Ti_1} - -
1~i-1

whence formula (IV-4) follows.

The situation is slightly simpler whenever i > c. In this case,

di=pipi+pi=l -Pip". (WV-5)

As before, the first summand of (IV-3) becomes Pi , since the event Fi is
independent of the past when a jump occurs between ti_1 and ti. When no jump
occurs between ti_1 and tj, we have Pr { F1 IF 1 (-n...n(Fi.l}-= 1, since, in this
case, Xi- 1 =Xi and the conditioning states hat Xi_ 1 S TiI. But i > c implies
that T T, and,erefore, X < Ti. Thus when i > c, the second summand

in (IV-3) is given by Fi3,and this establishes (IV-5). Combining (WV-4) and (IV-5)
by means of (IV-2),we obtain the conclusion.

Corollary. Suppose the observations are uniformly spaced, that is,

i=(i-1)6 fori=1,2,...,n.

Then the formula for Pn is

1 -PC n1- lPc " (1-3Pi),
enl 1T-0 PC i=l

where P is the probability of at least ene jump in an interval of iength 6 , i. e.,

I3=I-e-A6 .
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In the next theorem we proceed to compute P., the limiting value of cdp when it
is assumed that the process X* can be continuously observed over an entire interval
[0, t]. Such a probability might be expressed formally as

P,0 =1-Pr{ sup Xs* -T _
O~s< t;

we define its value to be limn_. Pn, where Pn is the cdp resulting from taking n
uniformly-spaced observations in the interval [0, t], with the first observation at 0
and the last at t.

(It can be shown that even when the observations are not uniformly spaced, the
same limit will be obtained as-long as the first and last observations are at times 0
and t respectively, and the maximum time between observations approaches zero.)

Recall that p* was defined to be the probability of a success in a trial at time t,
and define s- to be a point such that T is a minimum threshold.

Theorem IV-2. * Let the unimodal threshold function T* be a continuous
function. Then the limiting cdp, P•,, for continuous observations over the interval
[0, t] is given by

where X is the intensity of the Poisson aggregate-jump process.

Proof. Let the interval [0, t] be divided uniformly into n - 1 intervals of
length 6 -- the observations taking place at the points ti= (i - 1)6. Now, using

In the more special case when the thresholds are monotonic, this formula

was obtained earlier by J. D. Kettelle Jr. (see reference [h], page B-4)
using a differential equation approach. Both results include Theorem II-1
of Chapter IT, which assumes that the thresholds are constant.
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the corollary to Theorem IV-1, we have

1-Pc n
1l (1 -fpi),

n 1 - 3 Pc i=1

where

13=1-e-6 =6 + o(6).

If there is more than one candidate for c, we choose c so that tc is at minimum distance
from so. Clearly then, tc -* so as n - oo. We compute

Po= limPn
n-i.oo

by the use of logarithms. Now

n
In Pn =In (1 -Pc)-In (1-PpC) + E In (1- 3 Pi)

i=1

n
= In (1 -Pc) - In (1 - )3 pc+ Z in (1-xPi 6 + o())

i=1

n
= In(1 -Pc) -In(1- Pc) + (-Xpi6)+n. o(6).

i=1

Finally, since liran 3 = 0 and n= 1 +t/6 , we hav6
n-.oo

InPo= lim InPn In(=In( -p p ds.
n--- c - so -- Ps-
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Here, the fact that p is non-decreasing and then non-increasing ensures that it is
continuous almost everywhere and hence Riemann-integrable. Further,
limn- .O Pc = pso since p. = 1- K(Ttc), Ttc -. Tso from the right (since T is con-
tinuous and Tso is a minimum threshold), and K is a distribution function and hence
right continuous.

.. #####

General Thresholds -- A Recurgve Sbheme

One might attempt to compute dp for n discrete observations of a step process
by simply making a list 0, 41 the\2ifferent configurations of jumps which are possible
in -the n-1 intervals of time'betledn n observations, and then compute the non-
detection probability for each cpnfiguration. The result of adding these together,
weighted by the probability of $ch configuration of jumps would then give 1 - Pn"
However, if we denote the evet "at least one jump" by a 1 and the event "no jumps"
by a 0, then it is clear that thete are 2(n-1) ways the jumps may occur. (We are'
not particularly interested in "how many" jumps occur in an interval, since the net
effect of any number of jumps is to cause us to take another independent sample
from the distribution K. ) Clearly, the above method of computing cdp would become
tedious for large n. The recursive scheme to be described is a considerable
improvement over such a straightforward approach.

As before, let { ti ) be a sequence of observations, and Pi be the probability of
at least one jump occurring in an interval of length t, - ti1. In addition, let

qk, j= PrXi- Smin Ti} =K( min Ti) fork~j.
j <_i k ji iýk

Note that ,j = pj.

We shall compute Pn for n= 1,2, 3,4 in order to demonstrate the method of
computing Pn+1 in terms of Pn- Table IV-1 shows this computation. The symbol
Qm(k) denotes the contribution to Pm from all configurations of jumps ending in
k zeros. When k =0, we, of course, refer to thlse configurations ending with a 1.
The case n=1 is trivial, i.e., P 1 =ql, 1 = Pr {X 1 <_ T 1 }. An inspection of
Table IV-1 shows that,
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TABLE IV-1

CONTRIBUTIONS TO cdp -- RECURSIVE SCHEME

Configuration of Jumps Contribution to Pn

r 1 q2 q q 1 Q2(0)

0 92 q2,21 Q2l1)

1 1 P3 p2 q3,3 q2, 2 ql, 1 3

0 1 P3 2 q3 , 3 q2 , 1  
Q(0)

1 0 93 92 q3 , 2 ql,1 Q3(1)

0 0 P3 .132 q3 , Q3(2 )

[ 1 1 p4 p3 P2 q4 , 4 q3,3 q2 , 2 q1 1  1
0 1 1 P4 P3 ý2 q4 , 4 q3,3 q2 ,1

1 0 1 P4 03 92 q4 , 4 q3 , 2 q, 1 4

0 0 P P4 P3 P2 q4 , 4 q3 , 1n=4 •

1 1 0 P4 P3 P2 q4 , 3 q2 , 2 ql, 1

0 1 0 94 03 02 q4 , 3 q2 ,1 Q4

1 0 0 P4 P3 P2 q4 ,2,q 1 1  Q4

0 0 0 P4 P3 P2 q4 , 1  Q(3)
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Q3 (0) = /33 q3, 3 P 2

Q3(1) = ý3 q3 2  (0)

q2, 2

Q3 (2) 3 q3, 1 Q (1)
q2, 1 "2 2

Moreover, "

Q4 (0) = Pj4 q4 , 4 P 3

Q4(1)- q4 , 3 9(0)

4q3 ,3 3
q4,

Q4( 2 ) 4 ,4 2 Q3(1)

q(3 ) q4,1 Q( 2 ).Q43) •4 q,1Q

The general recursive formulas are given by the following set of equations:

TPn = @-n (0) + Qn (1) +"" +n %(n-1)

(0)_ (0)

Qn1) n%-1, n-1 n-0

-50-

I-



In

(2)-- "n, n-2 _()
Qn2 n= qn-1,n-2 n-i

"Qn(n-1) n ,1 Qn_l(U-2).
' n -l, -I

The procedure begins at n = 2, where

Q2 (0)=2 q2, 2 q1 ,1

and

Q2 (1) = P2 q2 , 1 "

Assuming that the ratios involving qi J have been computed beforehand, it takes
about 2n multiplications to go from Pn-1 to Pn" Thus, in order to compute Pn
starting from P 2 we must make

n
2 Z i=n(n+l) - 6

i=3

multiplications. Clearly this is better than the "straightforward approach" which
would involve more than 2 n-1 multiplications. Certain special threshold functions
will also reduce the amount of calculation.

-
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CHAPTER V

STEP-PLUS-JITTER PROCESSES

In this chapter we assume that the continuous-parameter process X* is
a "stoep-plus-jitter" process. This is a step process perturbed by slight distur-
bances which we call "jitter." Precise definitions will be given in the next
section. The computation of cdp, Pn, will be discussed only for the case of a
finite sequence of observations of the continuous-parameter process, i. e., no
limiting cases will be considered.

Recall that the problem of finding non-recursive formulas for cdp for
an ordinary step process was quite difficult except when the threshold function T
was unimodal. The presence of jitter further comp'icates matters ,and in fact
no non-recursive formulas have been found, even in the case where the threshold
function is constant. However, recursive relations similar to those of Chapter IV
are derived which are valid for an arbitrary threshold function and for any finite
sequence of observations. These are given in the second section. The main dis-
advantage of these relations is that they depend upon a number of integral expressions
which may be difficult to evaluate. Even assuming the values of the integrals are
known, the number of multiplications to compute cdp, Pn, is of the order of n2 .

In order to avoid these difficulties, an approximation to the step-plus-jitter
process by a special "rm-dependent" (see Appendix A) process is discussed in the
last two sections. When the threshold function is constant and the observations
are uniformly spaced, cdp may be computed for the approximate step-plus-jitter
process by recursive relationk which greatly reduce the number of integrals to be
evaluated. In addition, the computation of cdp for the approximation requires merely
order of n multiplications. The last section deals with the general m-dependent
approximation, while the section preceding it considers in detail the special 2-depen-
dent case. Here numerical calculations as shown in Figures V-1 through V-3 indicate
that the approximation is most satisfactory when there is a high probability of a jump
occuring between observations.
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Definitions

A. step-plus-jitter process X* is defined to be the sum of two stochastic
processes ZV and J*, where Z* is a step process, and JP* (called jitter) is a process
of independent, identically-distributed random variables,which is assumed to be
statistically independeat of Z*; the common distribution function of the random var-
iables Jt will. be denoted by G.

We recall a step process, Z7, is defined by the equation

t =YN~
t

where Y is a process of independent identically-distributed random variables, and N
is a Poisson process describing the occurrence of jumps.

As usual, l'et X, Z, and J be the discrete-parameter process resulting from
making observations at the points t 1, .. •, t,. For any such sequence of observations,
we let

fk, i = Pr {Xj<i, Xi+l< Tj+,l...,Xk<Tk I no jumps between j and k.

The quantity fk, j may be computed by

k, j= Pr{ ZI+ I <Tj, Zj+Jj+I<Tj+,... ,Zj + Jj<Tk)

=Prt Jj<Tj -Zj, Jj+1<Tj+1 -Zj.. ,Jk_'k-Z } (V-11

k
=f 0 [1 G(Tr-x) dK(x),

where G is defined above ".d K is the location-after-jump distribution of the step
process. Note that when the threshold function T is constant (T= TO), fk, j depends
only upon k-j. In this case, we denote fk, j by fk-j and
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1. ,iii
fk-j =f- G'-""* (To-x) dK(x). V2

The autocorrelation associated with the step-plus-jitter process Z* + JP is

2

a (s) = e for s#o,

K 2

a(O) =1,

where a'2 and 6 2 are respectively the variance of K and G, and X is the intensity
of the poisson process N. This is seen by applying Theorems C-2 and C-4 of
Appendix C. Note that a is discontinuous at 0 (assuming, as we, do, that OG2 / 0,
i. e., the jitter is not constant).

Exact Recursive Formula for cdp

In this section, recursive relations will be displayed which allow one to
compute the exact value of cdp, Pn, whenever the underlying continuous-parameter
process is step-plus-jitter. These relations are identical in form (with a substitu-
tion noted below) to the relations appearing in the last section of Chapter IV.
They apply with arbitrary threshold function.

Again, we use 1 and 0 to represent the occurrence or non-occurrence of
one or more jumps in a given interval and Pj for j>2 is the probability of at least
onc imp occurring in an interval of length t3 -t _1 - The symbol Q(k) is used to devote
the t antribution to %n from all configurations of jumps ending in k zeros. The only
specific change which has been made in going from the relations of Chapter IV to
those of this section is to replace qk,j with fk, J defined in the preceding section.

The relations are now given by the following set of equations:

Pn =Q(O) + Q(1) + 4,(n-1)
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Q10) -•nf -•
W nI:Pn In, n -h-1

fn,n-1 Q(0)

Sfnn-2 Q-I

n ~~fnl,n-2 n-

(n-i) fn, 1 (n-2)
Q n fn-1lf Qn-1

The procedure begins at n=2, where

Q(0)
Q2 =2 1,1

and

The reader may verify these equations by consulting Table IV-1 of Chapter
IV, keeping in mind that the symbols qk - should be replaced by fk .. Note that• . •. +." + J. YJ

multiplications in order of n2 are required to compute Pn, assuming that the required
ratios of the 1k - are calculated in advance. In view of equation (V-i), the calcula-
tion of fk, i coul3 be a formidable task. The type of approximation introduced in the
next two seZtions substantially reduces the number of fk, j to be computed.

The 2-Dependent Approximation

In this section we discuss in detail an approximation to the step-plus-jitter
process by a 2-dependent process when the threshold function is constant, and the
observations are uniformly spaced (i.e., ti = (i-l) 6). This is a special case of the
general m-dependent approximation discussed in the next section. We have singled
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out the 2-dependent approximation because it is the simplest non-trivial example of
the general method. Appendix A defines m-dependent processes, which are used in
these approximations.

As we have seen throughout this report, the presence of correlation between
random variables makes the problem of computing cdp vastly more difficult than was
the case for independent random variables. In fact, the literature survey in Appendix B
showed for the'class of Gaussian processes, there are no finite procedures or tabula-
tions available for the computation (under general conditions) of cdp for as few as
three trials. For the two-dependent approximation X, however, the random variables
Si and X j are independent whenever I i-j I > 2. This manifests itself in the fact
that the recursive formulas obtained in this section for the approximation will require
only order n multiplications for the computation of cdp--in contrast to order n2 multi-
plications to compute the cdp for the actual step-plus-jitter process.

As was noted earlier, whenever the threshold function is constant, fk, j depends
only upon k-j and is denoted by fk-j.

The approximate step-plus-sitter process is obtained by constructing a new
aggregate jump process r, which will resemble the discretely observed Poisson pro-
cess with the exception that at least one or more jumps must occur in every three
or more successive intervals.

Let

i
11 - 12 for i> 1 (V-3)

1=21

r1 =0,

where ql may assume only the values zero or one. We will consider 71 = 1 to mean
that one jump has occurred in the interval the (1-1)st and 1th observation while q1
will mean that no jump has occurred in this interval. The process 17 is defined to be
a stationary 2-stage Markov process (not to be confused with a 2-dependent process--
(see Appendix A) with two states, 0 and 1. The transition function *I,

*(i,j;k) = Pr{ 711+2 = k IJ1 -=-i and 71+1 =J } for any 1>2,
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is specified to be of the form

f(i, j; 1) = X,

whenever i and j are not both zero,and

*(0,0;1) = 1.

We have chosen this particular specification in order to have the process, q , resemble
a sequence of independent, identically distributed random variables. The constant x
(a conditional probability) is, at this point, unspecified. In fact, the proper selection
of X is the critical part of the approximation.

The initial distribution #',

0(i,j) =Pr {1 2 i,713 =j},

is taken to be the stationary initial distri bution found by solving equations

0(O,j) * (O,j;k) + 0(l,j) * (1,j;k) = O(j,k) for O<j, k_<1.

The solutio is, of course, expressed in terms of X and is given by

2
0(OO) = X

x2 -3X +3

(1,0) = X2 -3X +3

-58-



X
( x2 -3x +3

x
•p(1, 1)

Note that

1

Pr{711 =1} = 0(1,0) +0(1,1) = X2_3× +3

In order to choose X, we equate Pr {q1 = 1} with the probability of at least one
jump in an interval of length 6 for a Poisson process, obtaining the relation

1-e- X65= 1(V-4)
X2 -3X +3

or equivalently

X6

(x 2_X +3) - e

e X-1

Here X is the intensity of the Poisson process N. Note that (V-4) implies that,
l-e-'X6, the probability of at least one jump in an interval of length 6, must be at
least 1/3 for a solution to exist. Since X 2 - 3X +5 is strictly decreasing for X
between 0 and 1, a solution in this domain will be unique when it exists.

The 71 process has now been completely specified, and hence so has the
aggregate jump process r which was defined in terms of i by equation (V-3).

Finally, the approximate step-plus-jitter process, R, is defined to be

= .5+-J ,
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where

2 =YI.

The process I is 2-dependent because if i-j >2, then Xi and R j are independent,
since I' will have increased at least once between time i and time j. Also, the stationarity
of I is a direct consequence of the stationarity of 17

Recursive relations will be derived for computing cdp for X, under the
assumption that the threshold function T is constant (T= TO)). To this end, Table V-1
gives the array of possible realizations of q for the case where n=5 (i. e., 1=1, 2,3,4).
Note that

Pr {(XpTo,... ,Xk<To I no jumps indicated by r between j and k}

=Pr{ Zj + Jj To,...,Zj + Jk<To}

=f0'0 Gk-j+ 1 (To -x) dK(x) = fk-j

by equation (V-2).

Each row in Table V-1 represents a different realization and the expression
following each is the contribution to the nondetection probability of that particular
path.

The recursive relationships for cdp, Pn, are given by writing Pn in the form

Ph= (1,1) M(n1) + 0 (1,0)M410) + 0(0,1)M4I) + 0(0,0) M4 0),

where 0 (i, j) M(ni] is the contribution to P,• from all the cases where the firIt.fwo
values of the realizations of qi are i, j. We may express MOnDJ) in terms of Mýn. 1 by
the relations
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TABLE V-i

CONTRIBUTIONS TO edy -- RECURSIVE SCHEME

Jump Configuration Contribution to Ph

1 1 1 1 0 (1, 1) I(1;1) *(1, 1; 1) fof o of

1 1 1 0 0 (1, 1)4(,1) 'k(1, 1;0) fo fo fof,

1 1 0 1 0 (1, 1) *'(1, 1;0) P(1, 0; 1) fofoflf 0

1 1 0 0 0 (1,11) 4'(l1 1;0) *(1,O0;0) fO fOf 2

1 0 1 1 0 (1, 0) P(1,0a; i) '(0, 1; 1) fofifofo

1 0 1 0 0 (1,0) '(1,/0; 1) *'(0, 1;0) fo f1f1

1 0 0 1 0 (1 1O) '(,0;0) *I(O,0; 1) f'Jf2 fO

0 1 1 1 0 0, 1) ( 1; 1) f(1, 1; 1) flffWf

0 1 1 0 0 (0,1) *I(0, 1; 1) *(1, !;0) fjfofj

o 1 0 1 (',O1) *(0, 1;0) *I(1,O0;1) f, ffo

0 1 0 0 4(0 ,1) *I(0 ,1;0) *(1, 0;0) fif2

o o 1 1 (0, 0) *(O, 0; 1) *'(0, 1; 1) f2fO fO

o 0 1 0 (O,0) *I(0,01 OM (0, 1;0) f2f 1
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M(lJ)-f 0 {o*(1,j;0) MnTJ1 4- (1,(j;1) MO-1)

M (0O1) f l {*OlO) +(10) 11 bill)
0- {*(0,1;0)M 0 +4'(0,1;1)M )~

n Tn- n -31 n-

(00) 2 *(0,0;1) (01) .2 . (01)

and the initial values are

(11) 3
M3  = fo

(10)
M 3  =f~f 1

M(301) =flf
-3 ifof

M (00)
3 f2

One may easily see that these relations are valid by inspecting Table V-1
for the case of n=5.

Note that, in general, one never needs to use the values of ij for j>2. This
is what makes the approximation convenient since the exact expression for Pn would
involve all values fo, fn- 1 - Once the ratios f2/f 1 and fl/fO have been computed ¶
and M(ij) are known, it requires only 10 multiplications to obtain all M(. 1 Thus itn n'only requires 10 (n-3) +4 multiplications to obtain Pn from the given values of M(ij).
Also one need not compute Pn separately at each stage.

Figure V-1 shows the non-detection probability Fn for a step process Z
(no jitter present) and the corresponding approximate step process Z versus the
number of trials n. The single-trial probability of failure is taken to be .8. The
comparison is made for a high probability (. 865) of one or more jumps occurring
between trials and a low jump probability (394). Note that. 865 and 394 correspond
to A,6=2 and X 6=I, where X 6 is the expected number of jumps between trials
for the Poisson process. Also note that . 394 is close to the limiting value
of 1/3 -- the smallest value for which the approximation is valid. (A line
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FIGURE V-1
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S1.0 FIGURE V-2
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1.° FIGURE V3
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representing the value of 1-Pn under the assumption of independence between
trials has been included in the figure for reference.) The formula for unimodal
thresholds (Theorem IV-1, Chapter IV) was used to compute Pn for the step process.
The figure shows clearly that even in the worse of the two cases (jump
probability =. 394), the percentag error does not exceed about 6%.

In order to test the approximation when jitter is actually present, we have
made a comparison for the following special type of step-plus-jitter process. (The
results appear in Figures V-3 and V-4). Let the "location-after-jump" distribution
K be given by

0 when x < -a

K(x)=-, when -a<x<a2a

1 when x>a

and the jitter distribution G be given by

when x < -c

G(4)= 2• ~c when -e< x< c

L when x > c

Both K and G have thus been taken to be uniform distributions where the mass of K is
located between -a and a and the mass of G is located between -c arid c. We shall
choose c to be smaller than a, as the word "jitter" implies. Now

= fGm+l (To -x) dK(x)

1 fa G m+l(To-x) dx for m. 0,
-a

and, assuming that To =0,
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1 a im+1 a-cfm f-a (-x)dx - +2a 2a (m+2)a

Note that as the jitter becomes smaller and smaller, i. e., c- 0, fm ½ which corresponds
to the value of fm for the pure step process. Figures V-2 and V-3 show a ,,omparison
between Pn as computed for the step-plus-jitter process and for the approximate step-
plus-jitter process in the case just described. In each figure we have included for
comparison, lines representing Pn for the case of independence between trials and the
case of the pure step process (i. e., without the jitter present). Figure V-2 assumes
that the probability of at least one jump between trials is . 865 and Figure V-3 assumes
that the jump probability is .394. (These are the two cases that were shown in Figure
V-1 for the case of a pure step process.) The figures indicate clearly that the approxi-
mation is much better when the probability of one or more jumps in an interval is high.
This is to be expected since in this case one would expect r to be a better approxima-
tion to the Poisson process. Also, in the cases considered, the values of Pn as computed
for the pure step process are surprisingly close to those computed for the actual step-
plus-jitter process. One must be careful in drawing general conclusions, however,
since the G and K distributions are of a very special type. Finally, note what a poor
approximation is given by the assumption of independence between trials.

The m-dependent Approximation

In this section, the results of the preceding section are generalized to the
case of an m-dependent approximation. The method of approach will be exactly the
same, i.e., the Poisson arrival process is approximated by a multi-stage Markov
process r. The approximate step-plus-jitter process is then defined in terms of r.
On intuitive grounds, one would expect the approximation to become better with increas-
ing m.

Once again assume that

i
1, =0Z2 •I, for i > 1,

rl = 0,

where ? may assume only the values zero and one. We now define q to be a stationary
m-stage Markov process. That is, the transition function # depends on the past
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m positions of the process. Let

*(lI)i2• .. ý;J) = Pr{ 71, j 77 1_-1 =ira ...... ql-M 4:ilJ}

and

(il,.. ira) = Pr {'q2 --'l1 710 =i2,... ,17m+ 1ira)'M

where the i's and j are either zer, or one. The transition behavior of 71 will once again
be chosen in such a way as to make qi resemble a sequence of independent identically -
distributed random variables, the exception being that no sequences with more than m
successive zeros will be permitted. Thus, the transition function T is defined by

lt(ii,...,im;l) =X for iI+... +ikjO,

r(0,. .. ,0;1) = 1.

The equations defining a stationary initial distribution 4 are given by

1X• 0(k, ii, i2, . ,ira-l) *(k, i1, i2,. , ik-l0 ik=0(i ,., im).
k=O

The existence of such a distribution is assured by the fact that the m-tuples
,11,,71+1 ,.... 71+m-1) form a vector-valued Markov process (reference [s], page 89).

Finally, we equate Pr I% = 1} with the probability of at least one jump in
an interval of length 6 for the Poisson process, and solve for the appropriate value
of X This step is expressed by (2: denotes the summing over all subscripted i's).

i
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The 71 process is now completely specified, and hence so is r by equation (V-5).

The approximate step-plus-jitter process g is then defined by

X= Z+ J,

where

Z=Yr.

The same reasoning as in the last section shows that X is stationary and m-dependent.

The recurive relations for computing cdp are again found by expressing T:
in the form

[ ~~Pn =. li""i-)M~n1 i""im-1)
1

+ P(,~i..., 2 MI0li1I" •ira-2)

1 1

.. . (V-6)

+ €(,0,..,01) (n00'...01)

+ 0(0o0o,... 1,o ) Mn°' .)•

(00 ... 0)

and
""il. "m 4..im-lO)+(,iM (nll" .. im-11) "

Mn - f o((1,i.l' •,l im-1;O)Mýn-i ... im-1;i) Mn-i
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M(01i1"• ira-2) =fl •*0 1l,. • .. i m-21ý)

n =o • •01 .m-2;0)M nl~• "ia2)+(,1 .. m_2;1)Mn-

g00... 1) fm-1 (*(0,0 1;0) MOO0... 10441 (0,0, 1;1) "n-11)
fm-2 n-1 n-i

(00...0) Im m (00...01) fm (00...01)

Mn = • *(O,O,...,O;1) Mn_1= Mn-1 (V-7)

These relations may be verified by examining the possible ways the jumps may occur.

The general scheme described by equations V-6 and V-7 is applicable only
for finding 1n where n>m. A modification would, of course, be possible, bt this
would involve more labor than actually computing the true Pn for n< m. As it is, we
still have to specify the values of M(iM - im) in order to hitiate the recursion. These
are given by noting that z 

--

Mi "m) Pr m+ 1 72 -='l-'q3 3:i2, ,1 m+1 im}r [

I
which may be found by inspection. For example, if m=C, then

01001)

The number of multiplications needed to find Mn(given Mn_1 and the ratios

fi+l/fj for j=O, ... ,m-1) is

3 (2m- 1) +1. (V-8)

It is important that n does not appear in (V-8) since this implies that the number of --

multiplications required to compute any Fn is just of the order of n. However, the
fact that (V-8) increases rapidly with m suggests that only the approximations using
small values of m would be practical for most applications.
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APPENDIX A

SOME FUNDAMENTALS OF STOCHASTIC PROCESSES

This appendix discusses some elementary concepts in stochastic processes
relevant to the body of the report. Although the measure-theoretic approach to
probability theory has provided a solid foundation for the subject and has led to
many new and important advances, an effort has been made here to present the
necessary concepts without resort to measure theory. This discussion is certainly
no substitute for a text. For an advanced treatment of multivariate distributions,
see, for example, Cramer, reference [ r ]. For the more advanced subject,
stochastic processes, see either Doob, reference I s ], or Rosenblatt, reference
It I.

The first section discusses random variables and distributions. General
stochastic processes are discussed in the second section, while the third section
is addressed to the important class of Markov processes.

Random Variables

An n-dimensional random variable*X =(X 1 ,...,Xn) may be regarded as a
real vector which describes the outcome of some experiment which may be repeated
(at least conceptually) a large number of times under uniform conditions. Associated
with the random variable X is a function H of n variables, called its joint distribution
function.* A function H can fill this role if, and only if it satisfies the following
conditions (see reference [r ], page 79).

(1) O<H(xl,... ;xn)< 1

(2) lim H (xl,...,x,) = 0 for i = 1,...,n
xi-6-0o

(3) limr H(Xl,..,xk) 1
x1, ... , Xk%•O

Such an n-tuple of one-dimensional random variables is also a stochastic process
(next section). The two terms refer to the same object from different viewpoints,
both useful.
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I A.

(4t TI ia nnn-dAcreasinir and continuous to the right in each variable xi

(5) The differences

• H(Xl + yl 1' xn + Yn) - H(Xl, x2 + Y2"' 'xn + Yn)

• -- H(x1  + y1 '.",xnIyn-1 + Yn-1, xn)

+... + (-1)n H(xl,. .. xn)

must all be non-negative.

This function specifies the stochastic behavior of the random variable X in the

sense that the probability that Xi not exceed xi for i= 1,... , n is defined to be
H(x1 ,... ,xn). In symbols,

Pr{Xi<_xi for i=1,... ,n) =H(Xl,...,xn).

Thus 1 -His a cdp.

The set function Pr may be extended to a much larger class of sets than just the

particular n-dimensional semi-infinite intervals Xi S xi for i =1,..., n. See

reference [r] for the details of this construction.

The conditional probability that X be a member of A, given X is a member of

B, is defined to be

Pr{XcAX PrX E A B

PrrX c B}

Suppose now that g is a real-valued function of n variables and integrable in

the Lebesgue-Stieltjes sense (see reference [r])with respect to H. Then

g(X1 ,..., Xn) is a random variable; its expectation is defined to be

E {g(X1,... ,Xn) } . t, g(xl,... ,Xn) dH(Xl,-... xn).
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The mean, Ai,and the variance, ?2, of Xi are defined by

pui E {Xi}

S -E { (X,

when the expectations are finite (to which case we restrict ourselves). The square
root, ci,of the variance of Xi is called its standard deviation.

The correlation coefficient Pij between Xi and Xj is defined by

E{(Xi - Ai) (X1 -!s)}
Pij = _ _ _I

providing ai aj J 0. The concept of correlation permeates this report (Appendix C
presents some miscellaneous correlation results). Note that -1 <. Pij < 1. If
p" -> 0, then X, and Xj tend to be high together or low together, and the magnitude
ofpij is an index of this tendency. If Pij < 0 (probably not important in cdp problems),
then Xi tends to be high when Xj is low, and vice versa. If Xi and Xj are independent
(defined below), then Pij = 0, but not necessarily conversely.

The correlation coefficient between two two-state (i. e. success-failure) random
variables will be denoted by r rather than p. It is important to realize that the correla-
"tion between success-failure variables obtained by thresholding multi-state variables
does not, in general, have the same value as the correlation between the latter,as
shown, for example, by Theorem C-3, Appendix C--for a non-trivial case where the
two are the same, see Theorem C-4.

In the one dimensional case (n-1), the distribution function H is just a non-
decreasing right-continuous function such that

"hlim H(x) =1
X-0oo

"hima A(x) =0.
.. x"•-oo

A-3
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If 11 is absoiuvely continuous, then it is expressiLue iI t Uhe form

H(x) fx h(y) dy,

where h is called the probability densit, function associated with the random variable,
at points x where H is differentiable (which is almost everywhere), h(x)=H'(x).

A one-dimensional random variable X is said to be normally' distributed
when it has a density function h of the form

h(x) e= 1 (T

here a 2 is the variance and 1A the mean of X. ' lensity function of the normally
distributed random variable with 1i =0 and a 2=' .*alled the standard normal density
and is denoted by qp. In this case, the corresponding distributio n function is
called the standard normal distribution and is denoted by C.

In general, if a joint distribution function H(x 1 ,•.. ,xn) may be expressed in
the form

then h is called the oint density function.

The random variables X1,... , Xn are said to be multivariate normal whenever
their joint distribution function H has the following density:

1 -h(x). .n/2j Vl exp {-2(x-p) V (x-1)'}, (A-i)

S(2,,n/
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where x=(x 1,... ,x11), 4= (IAl,.. tin) and V is the non-negative definite symmetric
matrix of covariances i .i a. Pij (the prime denotes the transpose) -- again Ai and

are the mean and variance dX respectively. The symbol I vI denotes the deter-
minant of V. Strictly speaking, the distribution thus defined is called non-singular
multivariate normal, owing to the nonsir,-ula, ,Ly of V. A more general definition
of multivariate random variables is avahl •-e which applies even when I VI = 0.
However, in this case, the variates do not have a density function and we will not
consider this case further (see reference [ r ], page 312). Note that Vii = a2 and
hence, if we wished, we could express the correlations in terms of the covariances
by

Vii
pij= Vii vjj"

When n=2 and X1 and X2 both have mean zero and variance one, formula (A-1) becomes

22 2
= 1 x1 -2p xlx2 +x2

h ' 2) = 2 jr• exp [ 2(1-p2)

where p is the correlation coefficient between X1 and X2 . This is the bivariate normal
distribution -- it is tabulated in reference [ p ], which is very useful in the methods of
Chapter MI. While there are numerous applications of the multivariate normal through-
out the statistical literature, our present interest is in its use in the description and
study of Gaussian processes which are defined in the next section.

In concluding this section ,we define the important concept of independent
random variables. This is most easily done in terms of marginal distributions.
As before, let X = (K1,.. . , Xn); then the marginal distribution Hi of Xi is defined by

Hi(x) = Pr {X <X } = H(oo, oo,...,X....oo),

where x is the ith argument of the joint distribution function H of X. The random
variables X 1 ,. ,Xn are then said to be independent if
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H(Xl,... ,xn) = H1 (x1) H2(x2) ... Hn(xn).

If X 1 and X2 are independent, then we can express the distribution function H of their
sum, X 1 + X2 ,by the formula

H(x) = f:= Hl(x-y) d H2(Y),

where H is called the convolution of Hi and H2 (used in Chapter IV).

Stochastic Processes

A stochastic process X is simply defined to be an indexed collection of
random variables Xt. We restrict each Xt to be one-dimensional unleas noted other-
wise. The set of indices t is called the parameter set of the process. In this report
the parameter set is restricted to be either the half line [0, 0o) in which case the process
is said to have a continuous parameter or the positive integers, in which case the
process is said to have a discrete parameter. In order to make this definition precise,
one must specify the joint distribution of every finite sub-sequence (Xtl,... ,Xtn) of
the random variables in a consistent manner. Let Ht 1t2 .. denote the joint dis-
tribution function of (Xtl,... ,Xtn); then the following condi ons must be satisfied:

(1) If K is a permutation of the integers 1,... ,n, then

H t t2 ...tK (x K " "x ,K ) = I-tit,... ,tn (Xl "" "xn).

K K K 1n 1 n12 n

(2) If 1 < j < nar d xjl,... ,xn approach infinity, then

HtI1 t2•..tj (Xl"' -,xj) =Htlt2 ... tn (Xl,..., xji o,...,0).
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The set of possible values that the random variables may assume is called
the state space of the process When the random variables can only assume a finite
or a countable number of vahles, the state space is said to be discrete, and when the
random variables can assume an uncountable number of values, the state space is
said to be continuous. The underlying stochastic processes X'discussed in Chapters
III, IV, and V all have a continuous state space, while the two-state process D
discussed in Chapter II has a discrete state space.

A Gaussiar process (treated in Chapter III) is simply defined to be a stochas-
tic process for which all the joint distributions Ht 1t 2 ... tn are multivariate normal.

A proces6 X is defiried to be stationary if and only if

Pr{Xt, < xi fori=l,...,k} =Pr {Xti+s<xifori=l,...,k},

that is,

Htl..tk (X1, ... xk)= Ht 1+st 2+s' ... ,tk+s (x1,. xk)

One may express the content of these equations by saying that the stochastic behavior
of the process is invariant under displacements in time. If the process is stationary,
then, assuming that the means and covariances are defined,

(1) the mean and variance of Xt are independent of t; and

(2) the correlation p,5 t between Xs and Xt depends only upon

Is-ti.

Associ, ted with any stationary process is the autocorrelation function a, which is
definedi by

a (s) =Pt s+t

A-7



whenever both t and s+t are parameters of the process. If X and W are stationary
stochastic processes, with the same parameter set, then their cross-correlation
function PXW is defined by

p(s) E { (Xs+t-E {Xs+t }) (Wt-E{ Wt})

where and are the common variances (not zero) of the X and W processes
respectively (cross-correlation arises in this report only in Theorem C-1 of Appendix
C). Note that when X is a discrete-parameter process, the domain of a will be the
entire set of integers, and when X is a continuous-parameter process, the domain
of a and pXW will be the entire set of real numbers. Also note that a(s) = a(-s).

A discrete parameter process X is said to be m-dependent if Xi and Xi are
independent whenever I i-j I >m. This type of process was useful in approximating
the "step-plus-jitter" process in Chapter V. The autocorrelation function a for a
stationary m-depende:it process has the property that a(s) = 0 for I s I >m.

Markov Processes

Finally we discuss the important class of Markov processes. A Markov
process may be thought of as a process where future behavior is independent of the
past, given exact knowledge of the present. We may express this formally as

Pr {A(-)B I Xt= x} = Pr { AIXt x} Pr {B Xt =x},

where A is an event defined by a condition on random variables with subscripts less
than t and B is an event defined by a condition on random variables with subscripts
greater than t. An equivalent formulation of this statement, known as the Markov
property, is that

Pr {Xtn4 1 < YXtn=xn,...IXtN =-X} =Pr{Xtyn+ 1<_Y tn =xn}, (A-2)
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for any tl<t 2 <... <.tn+1

Suppose for the time being that both the state space and the parameter of the
process are discrete (this case is often referred to as a Markov chain). For conven-
ience, we denote the states by the positive integers, 1=1, 2,.... .Let the jth transi-
tion matrix (or transition function) *j and the initial probability vector 0 be given by

•IIj(k~h) = Pr{Xj =h 1Xj_lQ=k

and

0 (k) = Pr{X = k}

respectively. Using the Markov property (as expressed by equation (A-2)),joint
probabilities may be computed by

Pr{Xi =kl,...,Xn =kn} = 0(k 1) '2 (kl,k2)... *n (kn-l,kn). (A-3)

From formula (A-3) one obtains formula (11-5) of Chapter II directly.

Defining, for 1 >i,

1k il(k,h) =Pr{Xl=h IXi=k},

the matrix *i, 1 gives the probabilities of transition from time i to time 1 and is comput-
able by the matrix product

i, 1 j=--i+1 "'i
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Multiplication of transition matrices can be useful in cdp problems by use of "trapping
states." To idustrate; we give an alternative derivation of formula (H-5) of Chapter II
in this fashion. Replace the transition matrix of Chapter II, by

success failure

success 10

failure bj bj

Here "success" is a trapping state--once entered it cannot be left. If one multiplies
these matrices for j=2,... ,n, then the lower right entry, Ij_ 2 bj, of the product is
the probability that D2 =.. .=Dn=0, given D1 =O. Thus

n 1n -- j__I2 Ij

which is the formula (H-5). If the trapping state had not been used, then by multi-
plying transition matrices we would merely obtain relations between the first and
final trials without regard for outcomes of intermediate trials.

If the transition matrices 4) are independent of j, i. e., *j = I, then the
process is said to have a stationary transition mechanism. This will be the case,
for example, when the process is stationary. However, it is quite possible for the
process to be non-stationary and still have a stationary transition mechanism.

In Chapter II we have considered, in detail, the success-failure process D
as being two-state Markov. There it was noted that the transition matrices *j could
be conveniently expressed in terms of the correlation rj_1 between Dj and Dj_ 1 and
the single-trial probabilities pj and Pj-1"

One apparent generalization of the Markov process is the notion of an m-stage
Markovprocesrs. Here, the conditional probabilities satisfy a condition analogous to
(A-.2) r,-Anely,
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Pr{Xn+l=kn+ I Xn-kn,... ,X 1 =k1 } = Pr{Xn+l=kn+lI Xn=kn'"Xn-m+ln-m+ll

Intuitively, this means that the probability of moving into a new state is independent of
history of the process more than m-steps into the past. (These processes are also
called "rmuIlple" Markov processes, reference [ s ], page 89, or 'mr-step" Markov
processes, reference [ t ], page 60.) It is worth mentioning that the associated vector-
valued process, (W1 , W2 ,.. .),where

Wi = (Xi,Xi+i,.. . ,Xi+ml) for i=1,2,...

is just an ordinary Markov process, and it is sometimes useful to use this fact. We
use m-stage Markov processes in Chapter V in connection with an approximation to
the "step-plus-jitter" process.

Suppose now that the Markov process has a continuous parameter. (We still
assume the state space to be discrete.) Let the matrix *s,t be defined by

*8 st(k,h) = Pr{Xt=h I Xs =k},

for each pair of parameter values s, t such that t >s. As before, the Markov property
(expressed by equation (A-2))allows us to compute joint probabilities by the relation

Pr{ Xt 1=l,.. ,Xtn =kn} =Pr{ Xtl1 * tI, t (kl, k2) ... *tn_, t. (kn- 1, kn)•

The transition matrices *s, t satisfy the equation

analogous to (A-3) for a Markov chain. When *t depends only upon (t-s), the transi-
tion mechanism is said to be stationary. Again,t. is will be the case whenever the
process itself is stationary. The Poisson process N, used in the definition of "step"

A-11 I
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and "tstep-plhs-jitterltprocesses, is an example of a discrete-state-space Markov
process with a continuous parameter. Its transition matrices are given by (reference
[t ], page 122):

(h-k)e -X(t-s)
for h>k

(h-k)!

*s',t(k, h) =

0 for h<k.

Here the state space is assumed to be the non-negative integers k=0, 1, ... , and
No = 0. Clearly, even though the transition mechanism is stationary, the process
is not, since

Pr{ Nt =k} -t eAt,
k!.

which depends upon t.

A discussion similar to the above may be carried out for the case of a
continuous state space (see reference [ t D) It is worth noting that the step processes
in Chapter IV are continuous-state-space Markov processes (this fact is not used
explicitly, however), and that in Chapter III, Theorems 111-2 through 111-4 are based
on the assumption of a Gaussian Markov process. It should also be noted
that the autocorrelation function, a, of a large class of stationary Markov processes
(including step processes and stationary Markov Gaussian processes) is of exponential
form, i.e., a (s) =e-Xs (see reference [s ], page 234).

A-12
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APPENDIX B

LITERATURE SURVEY ON EVALUATING THE MULTIVARIATE NORMAL DISTRIBUTION

The purpose of this appendix is to survey the previously published work
which has direct bearing on the problem of computing cdp for the class of Gaussian
processes. As noted in Chapter 1, this problem is equivalent to evaluating the
multivariate normal distribution function. The paper of Gupta, reference [v],
together with his extensive bibliography, reference [u ], provide an excellent review
of previous results on this subject and provide the basis for the discussion in this
appendix.

As elsewhere, we denote by Pn the value of cdp relative to a fixed threshold
function T. That is, cdp is given by

Pn 1 - Pr {XiS Ti for i=1, ,n),

where X 1,... Xn are multivariate normal. Unless noted otherwise, the random
variables Xi will be assumed to have mean zero and variance one. This assumption
causes no loss in generality, since If this is not the case, we may consider the new
random variables Ri, defined by

I

X,=

where pi and 2 are the mean and variance of X1 . The random variable 1 will then

B-1



have mean zero and variance one. Moreover, the correlation between X1j and Xi
is the same as the correlation between Xj and Xj.

Most results relating to the exact computation of Pn fall into the following
three categories:

(1) attempts to express In in a closed form involving tab-
ulated functions (usually associated with some very
special selection of the numbers Ti, e.g., T, =0 for
i=19 .. .,n.);

(2) the computation of %n in terms of an infinite series
expansion or the expression of Pn as a single definite
integral; and

(3) attempts to give reduction formulas fol Pn ,i.e., methods
of expressing Pn in terms of the multivariate normal
distribution for fewer than n random variables.

Clearly, results in the first category would be most satisfactory for our
purposes if they were sufficiently general. However, the results in reference [ v I
in this category, which we now discussare restricted to the special case where
Ti = 0 for 1 <i.< n. Even then there are no general closed form expressions available
for Pn when n> 3. The expressions for n=2 and n=3 are given by

$

1 + (arc sin p) (B-1)

and 
P Z

P3 = 8+ 47r (arc sin P12 + arc Sin P13 + arc sin P23)' (B-2)

where Pij is the correlation coefficient between Xi and Xj,(see reference [ v ], page
801). For n odd the following recuirsive relation is given by Davis, reference [ w]"

I= 1 +...+ H1)n-1 B--3)

B-2
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here P. represents the probability that all of a given selection of j of the X's are
negative ,and the summation is extended over all (n) combinatios. In fact, formula

(B-2) was computed making use of (B-1) and (B-3). For n larger than 3, however,
the intermediate values of P. for j even must be known, and at the present time

jthese are not available in closed form.

If the correlation matrix is restricted to certain special types, then formulas
for Pn may be found for n> 3. As a case in point, suppose all the correlations
between distinct random variables are equal to ½, i. e., pi= for ii j. Then one
has (reference [v v)

-. 1
Ph -(B-4)

Another special case is where the inverse V- 1 = (wij) of the covariance matrix is
such that

[2• if i--j i

S=j -1 is [i-j[

0 0otherwise

Here, Anis and Lloyd have proved that (reference [x ])

-3/2
Ph =(n+l)

Note that here the random variables Xi are not assumed to have variance 1, in fact
for n=2, each random variable Xi has variance 2/3.

While the aforementioned results are interesting from a theoretical point of
view, they are much too restrictive to be of any use at all in computing cdp in practical

situations.
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Pesults in the second category are somewhat less restrictive but, of course,
their application must deal with problkms of convergence or numerical integration.
An example would be the following formula, reference [ y ], (we are no longer restricted
to Ti = 0,i=l,... ,n):

S f =1 nn DTi -aiyPI~~~~~ ~~~ IX•T Io i= q,.,} '•[ 1• •))l •(y) dy, (B-b')
oo 1=1 .42

1

providing the correlations Pij are given by Pij =a ia j for iij. Here b is the
standard normal distribution function and q0 is the standard normal density function.
For more general types of correlation, there are expansions for-Pn in terms of
generalized tetrachoric series, reference [ v ]. However, these are quite compli-
cated and converge very slowly for high values of I[Pi] I.

The results in the third category are rather snarse and have the disadvantage
of reducing the given problem to another which may still not have a satisfactory solu-
tion, For example, John, reference [ z ], obtains a formula for evaluating the
probability integrals A, in n-dimensions if those of (n.-1)-dimensions are available.
Plackett, reference [aa], also gives a reduction formula applicable for arbitrary n,
but its application is quite laborious when n is large (see page 804 of reference [ v ).

In addition to exact expressions, there are a number of results in finding
bounds on in The most useful result along these lines for present purposes is the
result of Slepian, reference (bb], which shows how ln changes with the correlation
Pij" The precise statement of this theorem is as follows:

Theorem B-1 (Slepian). Let (X 1,. ,Xn) and (X1 , ",;X) be multivariate
normal with means zero, varianct s one, and correlations respectively Pij and Pi -
Then if pij >> P- for all i, j the inequality

Pr{Xi< Ti for 1.i<n}> Pr{Xi<Ti for l<i<n}

holds for arbitrary T1 , ... , Tn.

B-4

N..



We now give the following two applications of this theorem to the approximation
of cdp.

Application 1. One can show, using Slepiands method, (see Berman, reference
[cc]) that, when Ti _ TO, for i=1, ... n,

To27<1 -i") exp (B-6)

Pk - 2'n"kl

For convenience, let the right hand side of (B-6) be denoted by 0 (T0 , Pkl). Suppose
that (as in the stationary case) Pij depends only on I i-jl , and define pj = pl+j, 1
Using the law of the mean, we have

IPr{Xi_<T 0 for _<i<n} -Pr {Xi_ T0 for 1<i<n} i_ pj I(n-j)0(T0 , Ipj I),

j=1

where Ni are independent and normally distributed. Since

Pr{Xi < To for 1<i<n} = ( T0)n

where $ is the cumulative normal distribution, we have a bound on Pn"

Application 2. One can use Slepiads theorem in still another way. If

Pij =p for iij, 1_< i, j_<n,

then it can be shown (reference [v]) that the desired cdp is

A
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Pr tXi_<Ti, for 1_i<n} L -'T) 1-)d(y)

where 4) is the normal distribution function. This is a special case of equation (B-5)

given earlier. Therefore, if Pij are not constant, let

p =m pri andp* =maxp.ij ij Pj

and then

f0 n Ti- P 2Y 0ny

-00 .1 4((1-p)• ) d :(S) Pr {Xi_. Ti for n< 00 )dt(y).

See reference [v ] for more details. If the Ti a T0 for i=1,... , n, then we have the

slightly simpler formula

TOpYl @n(-W*Y 2d(

fon (To-piy d4(y) . Pr {Xi_.To for all i, _iS<n}_<fOO n( &y)y.

Tables of values foi integrals of this latter type have been made for selected values

of T0 , p (or p*), and n in reference v].
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APPENDIX C

CORRELATION THEOREMS

In this appendix we present four theorems concerning correlation, which
are relevant to cdp calculations.

Theorem C-1 gives a fPr- iula for the autocorrelation of the sum of two
stochastic processes. Theorem C-2 presents elementary facts on correlation be-
tweentwo-state random variables. Theorems C-3 and C-4 relate the autocorrela-
tion of a multi-state process to that of a two-state success-failure process obtained
by thresholding.

Autocorrelation of a Sum

Theorem C-1 presents a formula for the autocorrelation function of a
stationary stochastic process which is the sum of. two (cross-correlated) station-
ary stochastic processes. In general this theorem is useful in synthesizing
empirical estimates of correlation from estimates on additive component processes.
Note that if there is no cross correlation between X and W, then a simpler state-
ment of the theorem is that the autocovariance (variance, times autocorrelation) of
X +W is the sum of the autocovariances of X and W.

Theorem C-1. If X and W are stochastic processes with constant means il
and 42, constant standard deviations a1 and a2, and autocorreiation functions al
and a2 rc-apectively, then the autocorrelation of their sum is

(S) ' 1 a l(s) + o2 'a2(s)+o '1o2 [p(s) +P (-s)]
-. 2 291i + + 2 cr, a2 (P ())

where p is the cross-correlation function between X and W.

C-1
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Proof. We have, denoting the variance of X + W by a2 ,

2a (s) = E { (X + W)t (X + W)t+s}- (Al + I2)2

2 2

=EXtXt+s} -1 + E{WtWt+s} -A 2

+ E{XtWt+s} -A 1A2 + E{Xt+sWt} -;A!1 2.

It is easily shown that

a22 = + a 2
2 +2aia22 p(0).

Since E {Xt+sWt } = E{ XtWtys}, the theorem follows. #####

Correlation Between Two-State Variables

The following theorem presents three statements concerning the correlation
of random variables over a two point sample space. Statement (ii) is used in proving
Theorem C-3.

Theorem C-2. Let D 1 and D 2 •e two random variables over the same two-
point state space {O, 1} . Let

Pt = Pr{DI=1} , P2 = Pr{D 2=1}

and

z = Pr{DI= 0 and D 2 = 0}.

Then

Mi ZýýJ Z- i S"<-P2, and Pi+ P2<-i + z;
(ii) if 0 < pl,P2< 1, then the correlation coefficient r between D1 and

D2 is

C-2



z-P1P2
r= r

(iii) if 0<Pl,P2< 1, then

SPlP2 P-P

and

-I--2 < _ i iP2•

V 12 - Fi,

Note that the quantities in the conclusions do not depend on the state designation --

they could be arbitrary numbers and the same results hold.

Proof. Statement (i) is obvious. Proof of (ii) is straightforward computation,
noting that when z ,pl, and P2 are given, the other three joint probabilities between
D1 and D2 are determined. Statement (iii) follows from (ii) and (i). ###

Correlation in Thresholded Processes

Theorem C -3 provides an inequality comparison between the autocorr elation
of a stationary Gaussian process with that of an associated success-failure process,
obtained by thresholding. Since any two observations of a Gaussian process are
random variables whose joint distribution is bivariate normal, random variables
rather than processes are treated in the theorem. One implication of the theorem
is that the success-failure process associated with a Markov Gaussian process need
not be Markov (e. g. the special case where T eqals the means and equality holds--
if r is exponential, sin-1 r is not exponential).

Theorem C-3. Let X1 and X2 be a pair of random variables whose joint
distribution is bivariate normal with correlation coefficient p. Let D1 and D2 be
formed by collapsing X1 andX2 into the two states 0 and 1 by use of a threshold T:

D1 = 1 if and only if XI>T

D2 = 1 if and only if X 2 >T.

Let r be the correlation coefficient between D% and D2. Then
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r .I V Sin . I p I.:I pIt
:rl 2 " -lj IP"I I,

and

r>O if and only if p >O.

If T = E {XI} = E{X 2}, then Iri = (2/7r) sin-' I p I (in this case r is sometimes
called "clipper correlation."

Proof. We pnay just as well assume that X1 and X2 each have zero mean and
unit variance. The threshold T defines the following regions A, B, A', B', in the plane:

B A

For L a rectmgular subset of the plane, let

1 x2-2p xy+y2

F(L) = ff 1 exp [- 2 dxdy.21'v1" 2(i-p 2 ) '-

L ip

We then have, by Theorem C-2(ii),

F(B)
r-

F(A-L) B) [I-F(A•J B)]

Let

e-x2/2 fz Vx

(P(x) -e *(z) z (x)dx,
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and

k=: F+P7

Then it is straightforward to show that

d
T F(B) =-4p(T) I(kT)
dT

and

d F(AU 1B) =- (T).
dT

It follows that

dr q(T)
[*(kT) -(1-r) i (T)]. (C-l)dT F(AU E) [ 1- F(AU 1.3) ]

Letting

(1(T,p) = 'P(kT)
*(T)

we see from formula (C-i)that

dr > 0 if and only if r >1-21(T,p).
dT

We show, by contradiction, that if p >0, and T> 0 (which implies 1- 2(Tp) is
positive and decreasing with T), then dr/d T <0. Let p >0 and assume that, for some

I
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"0 Z_ 0 . . . . "0

dr
>0.

dT T

Then r. > l-(T, p) and, since this inequality will hold for all T >T, we have r > ro
for T > To. It then follows from equation (C-1) that dr/dT-*oo as T-w, since

lim (p T
T-Boo

by l'hospital's rule. This implies r >1, a contradiction. Therefore,

dr
p > 0 and T > 0 implies -< 0. (C-2)

dT

In a similar fashion, if r< 0 when p>O and T> 0, then dr/dT-Ooo as T-Ooo;
thus r <-1, in contradiction. Therefore,

p >0 and T> 0 implies r >0. (C-3)

By similar contradiction arguments,

dr
p < 0 and T> 0 implies r< 0 and - > 0, (C-4)

for, in this case, 1 -fl(T, p) is negative and increasing with T.

Now, by symmetry, r corresponding to T. equals r corresponding to -T;
thus I r obtains it maximum at T=) and relations counterpart to (C-2), (C-3), and
(C-4) hold for T< 0.

C-6



When T=0,

F(13 - (1- sin- p)
4 7r

F(AU B) = 1-

2

and

2 sin-p.

The conclusion now follows.

The bound on I r given by Theorem C-3 is tabulated as follows:

If IP 1 0 .1 .2 .3 .5 1.0

Then Irl < 2 sin-'Ipl = 0 .06 .13 .19 .33 1.0

The final theorem again deals with a two-state process, this time obtained by

thresholding a step process rather than a Gaussian process. The result here is more
easily applied, since one finds that the autocorrelation of the two processes, the step
process and the success-failure process,are equal.

Theorem C-4. Let X be a step process, with 1/X w- the mean separation
between jumps. Let D be the two state (success-failure) pic-cess formed by a grouping of
all values of X above a threshold T ir ) success, and all other values of X into failure.
Then the autocorrelation function associated with these processes,ciX and c D respect-
ively, are equal:

oX (s) = ab As) = e for s >0.

C
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Proof. By Theorem C-2 the autocorrelation associated with D is

c'D(s) u(s) - p2

p(1-p)

where

p=Pr{X > T}

and

u(s) Pr {Xt> T andXt+s > T}.

Since X is a step process,

"(s) = p[e- s + (le-eS ) p1]

where e is the probability of no jump in X during a separation s. Therefore,

aD(s) = p[e-AS + (le-eS) p] _p2 -As
p(1-p)

Now consider the autocorrelation associated with X. Let H, A, and a2 be the
distribution function, mean, and variance of Xt (same for all t). Then

{XtXt+s}= f [ x2e-Xs + (1 - e AS ) xLfO ydH(y)] dH(x)

=f0_ [x2e-AS+ (1 -e-&s) x A]dH(x)

e- (a2+2) + 2(1le(-e

C-8
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so that

E E(Xt- A) (Xt+ -IA)} E{XtX5 } -A 2 X

Thus, "X =aD.
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